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ABSTRACT

This thes's investigates the question of how cognitively informal representations can be used in
Human-Computer Interaction (HCI) to facilitate the interaction between user and compuiter.
The aspect of informality addressed by this thes's takes the form of sketch input and output,
based on underlying cognitively informa representational structures.

For the purposes of this thess an informal interface exhibits tolerance in its input and
variability in its output, and the underlying system uses the gist of a representation, rather
than operating on its origina inherently more complex sructure. The internal representations
of informa interffaces are composed of informal objects that are a combination of a
prototype, such as a straight line, and associated informal cognitive dimensions, such as
shakiness and thickness. Informal objects can be combined into composite objects (e.g.
rough straight lines can be combined to make a more complex shape such as a square).
Interna  representations of informa objects can be decomposed, manipulated, and
recomposed, while maintaining the essential ements of the original representation.

Thisthess proposes that an informd interface system may provide a useful and familiar context
in which a user can work. That is, gppropriate regard is given to the essential eements or gist
of arepresentation or operation, with unnecessary clutter being removed. An informal interface
system may adso provide a suitable system for indexing representations, based on the
addressable content of the gist of the representation. The thesis dso lays out a Structure for
representing informal objects. Examples are given of software tools that have been developed
to investigate the design of informd interfaces. The results of an evduation of an informa
interface gpplication is dso given, and further research topics and directions are proposed.
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1. Informal Interfaces

1.1 An Overview of this Chapter

This chapter introduces the concept of informdity in human-computer interaction, and
discusses how such concepts are dready being used in everyday life. Both Human-Computer
Interaction (e.g. user interface design) and the underlying representationa data structures are
conddered. Congderation is given as to why it might be useful to use informdity in computing,

and the potential benefits and drawbacks.

An overview is given of the key concepts of informd interfaces, for which definitions and
examples are given. These key concepts are explored in greater detail later in the thess, in
Chapter 3. A number of examples are given of how informaity might be used to good effect in
the design of software programs. There is dso a discusson of the pros and cons of usng

informality in interface and software design.

Findly, an overview is given for the methodology adopted in conducting the research for this

thes's, and the structure of the thesisislaid out in a chapter by chapter summary.

1.2 Introduction - Informality in Everyday Life

As computers become integrated into everyday life, we interact with them in more informa
ways than we used to. The latest microwave ovens, for instance, can now be asked to cook
food until they perceive that the food is ready, instead of having to be set to cook for a pre-set
number of minutes and seconds. Modern cameras are informd in the sense that it is possble to

just pick them, point and shoot; they do most of the work of focusing and caculating the



required exposure, rather than the user needing forma knowledge about the technology of
photography such as shutter speeds, aperture ttings and so on. Products like the Apple
Newton Persond Digitd Assigant (PDA) and the KidPix children’s drawing package are
informd in ther leved of interaction with the end user, through the use of handwriting input,
gestures, and the use of sketching. These are examples of a continuing trend away from
commeand-driven interaction with the computer, towards co-operative systems (Robertson,
Zachary & Black, 1990). In such systems, the user indicates high-leve intentions and
congraints, and the computer manages low-level operations and supports the user in framing

new intentions.

Such ingances of informdlity are becoming more common, and there has been research into
some aspects of it, such as usng sketches in collaborative design (Scrivener & Clark, 1994).
This thes's continues this line of research to address the issues of how notions of informality
can be infused into the design of computer interfaces and the internad operations of computer
systems, what internal representational structures could te suitable, and what the potentid
benefits and drawbacks might be of such systems. This gpproach addresses the issue that,
while some of the research that has been undertaken is notable for its use of sketch in input
and output, it has tended to rely on asupeficid front-end sketch interface (Meyer, 1996),
with the design of the underlying internd representations based on conventiond software

enginesring ideology.

It has been known from the times of Leonardo da Vinc (Fish & Scrivener, 1990) that
sketching is an effective ad in dlowing the mind to run fredy. However, there has been little

andyss performed of how to effectively use sketching both externally (as a medium for input



and output) as well as internally (in the sense of an underlying internd representation being
used to store and manipulate the overlying informa representations). Figure 1 shows adrawing
of “a house in the sun” by a five year old. This is recognisable to dmogt al adults from the
same culturd background, and children of at least that age, as just that. The widest scope of
the question “why is this image recognisable as a house?’ is one addressed by many different
aress of research, such as cognition and vison. This thesis concentrates on the question of
how the essentid eements of a representation (its “ gist” ) that can be used effectively in the

design of computer interfaces, and the underlying software and representation structures.

Figure1: Drawing of “ahousein thesun" by afive-year-old (context: white, male, Anglo-Saxon, British

citizen, residing in England) 1997

Thisthess sets out to present a cohesive structure for a particular type of informa interface, to
detall the research and findings, and to describe a methodology for investigating and
congructing such an informd interface system. This thes's does not attempt to address the

3



wider issues of informd interfaces in generd, but addresses one type of informd interface —
that of a personal computer based system, utilisng informdity in the form of grgphicd sketch

input and output.

The thed's investigates how a particular type of informa interface could facilitate an informd
and more familiar mode of interaction between a user and a computer. Furthermore, the
internd representations used in such an informd interface may sometimes provide a useful
dructure for data representation, one that concentrates on the essence of a meaning or

representationd state rather than a set of more forma parameters.

1.2.1 Formal and Informal — Dictionary Definitions

Let us condder some dictionary definitions for “formd” and “informd”. The Concise Oxford
Dictionary defines “formal” as “used or done or held in accordance with rules,
conventions or ceremony”, “precise or ymmetrical”, “perfunctory, having the form

without the spirit”, and “of or concerned with (outward) form or appearance, esp. as

distinct from content or matter”.

As for “informal”, the dictionary provides the definitions “ without ceremony or formality” ,

and “ everyday, normal” .

S0 by these definitions we might judge that an “informd interface’ would be one that goes
againg conventiond rules, is not necessarily precise, and in some way captures the spirit of

what the user istrying to do.



1.2.2 Thelmportant Issue of Context-Dependency

Note that it is necessary to condder the processes of human cognition, sSince meaning is
context dependent. What is meaningful in one context may be irrdlevant, or hold a different
meaning, in ancther. For ingance, an informa suspension bridge designers software package
would embed different congtructs of meanings for Structures, condraints, attachments and so
forth from an informa garden design program. There can therefore probably be no entirey
generd informd interface system, but rather different systems adapted for differing domains.
Also, within a particular informd interface system, regard must aways dill be given to context,

the purpose of the system, the level of detail required, and so forth.

1.3 Informality in Computing and I nterfaces

“Informdity” is by nature awide-ranging and sometimes vague term. This section discussesthe

type of informality addressed by the thess.

Rdaxing the condraints of formdity in different sysems is an interesting exercise. This will
mean different things in different types of formd systems. For ingance, a sysem may be
“formd” through its formdised architecture of data structures. Or, it may seem “formd” to a
user through the rigidity of operation. A sysem may be deemed to be formd” by users

through sticking to conventions of usage.

Applying a rdaxation of formdity, and thus increasing the leve of informaity, may not make
sensein dl systems. For ingance, it may not be clear as to what would be meant by “informa”
data gructures. However, according to this thess informality can be gpplied to input and

output interactions in computer systems. Conventiond input systems are formd in one sensein



that the user is condrained as to what interaction choices are available. Physicaly, keyboards
(with a finite number of keypress combinaions) and mice are only a physicd interface to an

underlying presentation interface such as a GUI (graphicd user interface) windowing system.

This thesis concentrates on the gpplication of informdity to user interface desgn — that of

sketch-like input and output on a conventiona computer graphics display. Here, sketchiness
is the gpplication of informdlity. Using sketch for input and output is “informd” in the sense that
it is sometimes a familiar and easy way for humans to interact, and is often well suited to
natura, cregtive processes. A user may sometimes fed more a ease interacting with a
computer through informa and familiar sketch rather than usng a more formd and
conventional system of mouse, keyboard and monitor. Sketch is dso informa in the terms of

this thesis because the underlying representation (or gist) of the substance of the sketch is
tolerant of the imprecison of the input data and output presentation. Such a seemingly
aupeficd front-end to a user interface exhibits interesting consegquences both for the internd

representations used in the system, and aso for the style and perception of operation by end
users. For instance, imagine the scenario that someone has been requested to send directions
to a colleague as to how to find an office for a meeting. If the two were in a room together,
one likely way this interaction could take place would be for one to sketch out a rough map
for the other on a piece of paper. The map would show, in frechand style, the essentid

elements of roads of importance, intersections, turns to be taken, and so forth. Such a solution
is difficult if not impossible in the scenario that the two workers are digant from each other,
and required to use a computer (eg. by usng a text-based email system) to effect this
communication. Alternative ways of accomplishing this task would be to (a) sketchamap on a
piece of paper and fax it, (b) sketch a map on a piece of paper, scan in the image to a
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computer usng a document scanner, atach the graphica binary image (e.g. a jpeg file) to an
emall, and send that to the colleague, (¢) use a drawing package such as Viso (Microsoft,
2000) to create an eectronic image of the map using the conventional tools of mouse, menu

ections etc, and the email thisfile, and so forth.

Now, there are two things about the very first way of accomplishing thistask, i.e. sketching the
magp on the piece of paper, which are essentidly informd. One is the actua mode of
interaction — familiar pen-on-paper, with imprecise hand-drawn lines. It does not matter too
much how good the rendition is, as long as it gets the essentid meaning (the “gist”) across.
And that is the second essentid element of an informd interface according to this thess —the
underlying gist or meaning of the representation. Again, it does not matter within rough terms
exactly what information was input, as long as the essentid meaning of the representation
remains the same. So precisaly how the straight lines for the roads were drawn does not
meatter. They could have been drawn in dightly different ways, by different hands, and il

retain the same meaning or gist in the overdl context of the map.

1.3.1 Definitions of Informality and Informal Interfaces

By “informdity” in this thess we mean a relaxation in the way that a user interacts with a
computer, and a relaxation in the way that a computer retains its interna states and data
representations. That is, users usudly interact with conventional desktop computers through
the use of amouse, keyboard and monitor. There are forma sequences for interacting with the
computer and the software programs running on it. For instance, a user has a pecific series of
steps to go through to create a word processing document, enter text, print the document out,
and so forth. Smilarly, to creste a diagram of a map showing how to get to a particular place
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(perhaps to someone's office), it is usud to go through the formd seps of running an
appropriate software package, entering lines and other drawing objects using the mouse and
menu sdections, and so forth. A more informa way of accomplishing this might be for the user
to be able to sketch the diagram directly into the computer free-hand usng a sylus, or to be

able to manipulate operations of the computer through gestures, €tc.

By an “informd interface’ in this thess we mean one tha is tolerant of imprecison in input
protocol and output presentation. Furthermore, an informa interface might use underlying
representations of data, state and so forth that are more to do with the essence of the meaning
of the state or data. For instance, consder the example of creating a diagram of a map. A
forma method and interface would result in a forma data sructure of, say, an object-
dructured rendition of the map. An informa method and interface would result in an abstract
representation of the map that contains al the necessary and pertinent data, but might not
necessarily produce exactly the same map when reconstructed. Nevertheless, in the same way
that two sketches of a map by the same person would be unlikely to be exactly the same
bitmap image but would mean exactly the same thing to this person, so the reproduced image

would Hill convey exactly the same cognitive information.

Note that while the interface itslf isinformal and relaxed in nature, the actud structures of the
internd representations used may be formal. That is, the objects of the interface and underlying
representations are informd in the sense that they have cognitive interpretations of informality
(such as “gist”). However, the data structures used to represent these informal objects are
formd in nature. For ingance, in programming terms they may be congtructed from C++

objects, or frames, or some other forma data representation method.



1.4 Key Concepts

By udgng the teem “informd” in user interface desgn and interaction we are referring to
interfaces that are tolerant of the user’s input (the user has flexibility in choice of action) and
that show variability in ther output. In an informd interaction there is a many-to- one mapping
between an input event (e.g. a menu sdection) and a Sate change in the notional machine, and

aone-to-many mapping between the ate of the notiond machine and an output presentation.

For example, many examples of ample hand-drawn graight lines magp to the one notiond
representation of what this theds terms an informal straight line, and this sngle
representation in turn would reproduce many examples of reproduced rough (i.e. looking like

hand-drawn) straight lines.

The am of this thess is to propose a framework for defining cognitively informd interaction
between a user and computer. By interaction we mean the process flow between user and
computer, which in turn is defined by the external and internal representations of the
interaction. By external representations we mean such things as images displayed on a
computer screen (whether as input by a user or as displayed to a user), and by internal
representations we mean the way in which the computer stores the information describing
such objects in a form to be operated upon, displayed, transmitted or the like. Consider the
example of a pull-down menu system; here the user is congtrained to afinite set of possbilities
of function choices, each of which maps onto one state, and each such date is shown as a
sngle or finite number of presentation choices by the interface. Conversdy, an informd
interface may map a possbly infinite number of different input events onto a Sngle sate of the

notiond machine, with the date being the gist of the interaction. By gist we mean a



representation of the essence of the meaning of a Sate, as discussed further in the next section.
Each gate of the notiond machine may be presented at the interface in a variety of forms,
governed by the condraints of the internd representation and the redtrictions of the output

device.

Thus, this thes's researches the idea of applying notions of informdity to both the user interface
and dso the underlying representational and operationd structures. Such informadity might be
congtrued as being somewhat superficid, if only goplied to the immediate front end of the user

interface, but such concepts can aso be applied a a deeper representationd levd.

1.4.1 Further Definitions of Terms— Tolerance, Variability and Gist

There are three key concepts behind informdity in user interface design - tolerance in input,
variability in output, and the gist of a representation - corresponding to the three stages of
input state, output state and the internd state of the system. By tolerance we mean dlowable
differencesin input function mapping to asngular internd representationd date. By variability
we mean that an internd representationd state can be mapped in a number of ways to an

output mechanism without appearing to have a different meaning.

By gist we mean arepresentation of the essence of the meaning of adate. That is, the smplest
and highest levd of abgraction of a sate when its atributes of tolerance or varidbility are
absent. For ingance, the gist of a rough hand-drawn graight line is smply the concept of a
straight line. This may be hard to identify and measure, but it can be done by, for ingance,
ascartaining that the essence of the meaning of the representational state, as judged by its input

and output states (which will be different), is judged to ill be the same. Furthermore (in a
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given context), a number of objects having different visud gppearances, but judged by humans
to me the same meaning, will be mapped by an informd interface system onto a single internd
representation state. Similarly, such an interna representation state will in turn be mapped to

visudly different (sketchtlike) output, judged by humans to have the same meaning.

For ingtance, imagine a rough sraight line, hand-drawn on a piece of paper by a human. If the
human were asked to draw a number of examples of arough straight line (perhaps on separate
pieces of paper) then it is unlikdy that any of them would be exactly the same if andysed in
minute detail. However, to the human who created them, each rough straight line would in one
sense hold exactly the same meaning — a straight line. So in this example the gist of the input
representation is a straight line. The tolerance of input means that the exact way the
representation is entered does not necessarily matter — dl of the amilar rough graight lines
meen straight line. If the collection of these images, on separate pieces of paper, were to be
shown to a number of different other humans, then we would expect them dl to decide that the
drawings meant straight line. So the variability of output does not have a notable effect —
the essentid gist of the representation has been conveyed successfully. Also, the character of
tolerance or variability does not affect the gist. For even though some of the rough straight lines
might also be described as “awobbly ling” or “a diagond ling’, taking awvay any eements of
the associated properties of the image (e.g. wigglyness) would leave the bare essentid dement

of the gigt of theimage, i.e agraght line.

Thus through the gpplication of input tolerance there are an (infinite) number of ways to input a
representationa state into a wmputer system through an informd interface, dl of which are

deemed to be equivaent representations. Similarly, through the gpplication of output varigbility
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there are ds0 an (infinite) number of ways of representing a computer sate, dl of which are

also deemed to be equivaent representations.

There may dso be a (possbly infinite) number of ways of representing the gist of the date
interndly, but each implementation will use only a Sngle internd representation for each gist.
That is, there are many possible informa interface formaisms, but only one would be used in

each particular implementation.

1.4.2 Levesof Representational Equivalence

There are three levels of representational equivalence according to thisthess.

1) Two representations are truly equivalent when there is no measurable difference between

them

2) Two representations are cognitively equivalent when there is a physica difference

between them, but they appear the same to the user

3) Two representations are cognitively informally equivalent (“Cl-equivalent”) when
there is a physicd difference between them which can be perceived by a user, but they

have the same meaning il to the user.

As an example, consider the case of sketches of a house, as portrayed in Figure 2.
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Figure2: Two sketches of a house

If the two sketches were an exact pixd bit-map copy of each other, eg. by means of a

photocopy or a cut-and- paste operation, then one is atrue equivaent of the other.

Two dightly different versons of a sketch of a house, viewed separately at different timesby a
user and deemed to have been the same sketch, would be cognitively equivadent. In this case

the user is not aware that the two versons are actudly dightly different — to the user they

appear the same.

Two dightly different versons of a sketch of a house viewed together a the same time (or
even a different times) by a user would be Cl-equivadent if they were deemed to represent to
al intents and purposes the same origind image (or gist) in aparticular context. In this case the
user is aware that the two versons are dightly different, but has decided that this does not

meatter (in a cognitive sense) in this particular context — they have the same meaning.
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1.4.3 An Example of Informal Interfacesand I nteractions

As an example, suppose we had a user interface which had been congtructed on the basis of
pen-based sketch and gesture input, and smilarly sketchy (albeit computer generated) output
on a monitor or LCD panel. The application could be, perhaps, a video whiteboard system,
with two such units connected across an Internet TCP/IP connection. Such two devices could

be separated by miles, or even on other sdes of the world.

Suppose the user on one end wanted to convey the rough idea of a new bridge design that
they had been working on. A smple video whiteboard system would alow the user to input,
with the use of a stylus on a touch-sensitive pand, a pixel bit-mapped graphical representation

of the bridge, which could be transmitted (real time) to the distant user.

Such as system could, using conventiond recognition and object systems, resolve the sketch
into a collection of intrinsic recognised shapes. These could then be conveyed to the distant

user, and reconstructed in some manner to provide asimilar rendition of the origina sketch.

Likewise, an informa video whiteboard system could be contrived. The user would sketch in
the initid design, and the informa system would resolve the rough sketch into its intrindc
informa components of lower-level objects such as draight lines and rectangles, and if
goplicable it would build these up into higher-level constructs such as box girders, supports,

gruts, and so forth.

Here, there is a digtinction between a sketch recognition to object system (aformd system, in
the terms of this thesis), and the proposed informa system. The formd system handles object

recognition aong conventiond lines, according to the literature. The informa system smilarly
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handles object recognition in some manner, but with the fundamenta congruct of tolerance of
input, variance of output (perhaps deliberate), and resolving the sketch objects to their gist as

the fundamenta representation.

Thus dthough asingle user, or anumber of different users, might input dightly different pixe bit
maps, the system would map each input sketch to the same internd representation for the
same class of bridge. This is an example of the tolerance of input. For instance, a number of
people might sketch in a number of types of bridge. These could, for example, be recognised
and resolved into their fundamental type, such as a suspension bridge, or adrawbridge. Soif a
number of people produced sketches of a suspension bridge, the system would resolve them
al down to his fundamentd type, or ther gist. As another example, a sketch of the Golden
Gate Bridge in the San Francisco Bay Area would not be much good if the bridge were to be
represented as a box girder type. On the other hand, few people would know the exact ratio
of, say, the gpan of the Golden Gate Bridge to the height of its support towers. It would be
possible to produce many sketches of the bridge that would be convincing renditions to most

people, even though the actua dimensions may not be exact.

What would then be transmitted across the wire, rather than a stream of, say, pixe co-
ordinates, would be tokens of the internd representations (the lines, boxes, struts and so
forth), their reaionships, and a representation of the nature of the informdity. This is an

example of the gist of the representation.

These tokens would then, in turn, be reproduced on the distant user’s screen.
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Thereis a this point a choice of exactly how to map the representation to an output image (the
variability). This could be a “formd” depiction, Smilar to an engineering drawing usng
draight lines, perfect curves, and so forth. However, a creator might not regard this as
cognitively informdly equivaent to the input information, because it represents a different
meaning. For example, an engineering drawing might be read as meaning box girder of length 3

metres, whereas the creator meant box girder of undefined length.

The variability of output isacrucid part of the operation of an informd interface as described
in this thes's, because the fact of this variability reinforces what is the intended meaning of the
representation. If an output machine (perhaps a computer program) were to be ingtructed to
redraw the image, then each example would be (ddiberately) dightly different. However, each
dightly different image would till convey exactly the same gist (in a correctly working system,
of course), and users presented with multiple representations should be able to separate the

gig of the representations from their incidental features.

The computer system should therefore depict the representation in its own rough sketch-like
rendition, either based on its own internd depiction engine dgorithms, or perhgps mimicking
the user's own syle. In this way, while there is variability of output, the gis remans a

cons stent mapping function across the communication mechanism.

1.5 Measuring Successin an Informal I nterface

Note that a fundamentd principa of the effectiveness of an informd interface sysem isthat the
resultant gist or intent of the relayed image is cognitively indistinguishable from the gist of the

origind rendition. That is, the images are Cl-equivalent. For instance, a rough sketch of a
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house on recompogtion might display dl the inherent crucial characteristics of the origind
design, such as the number of doors and windows, and the rough postion of the chimney.
Note that this is context dependent. A rough sketch of a house to be presented to a glazier
might dwell more on the detail of the designs of the windows, and panes of glass. A sketch to
be shown to an architect might be more concerned with the overdl essentid eements of the

type of roof (perhaps pitched), and the number of chimneys.

This thesis proposes two ways of measuring Cl-equivdence in informd interfaces: a) user

appreciation studies, and b) a feedback loop.

1.5.1 User Appreciation Studies

In user gppreciation studies, one could set up a focus group of a number of people, to whom
origind and recongtructed images are shown under suitable control. A successful set of
informa representations of images would be one in which alarge mgority of people decided
that the images were Cl-equivaent. Once again such a definition is rather loose and informd,
the metric this time of the degree of Cl-equivaence being the level of “user satisfaction”. Note
that there are two separate parameters under consideration: both the level of informality, and
Cl-equivalence. Note how the boundary conditions apply. If the degree of informdlity is zero
(i.e. aformd system), that is there is never any variability between image and the resultant
reconstructed image, then the user rating of Cl-equivdence (actudly just cognitive equivdence
in this case) should be a a maximum since the resultant image is exactly the same as the
origind. On the other hand, if the degree of informdity is so high tha the raing of CI-
equivalence is zero, then the representations are dl so distorted as to convince the users that
none of them are supposed to be the same image.
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As the degree of informality increases, so user satidfaction may change. However, it is
proposed that in an informd interface system as defined in this thes's, user satisfection can bea
maximum even with a non-zero degree of informality. For as long as the images are Cl-
equivaent (dthough not actually identical in aphysca sense of rendition), then thereis no loss

of gist to the users.

However, a some point as the degree of informality increases, so too does the degree of

malformation of the resultant image - and hence user stisfeaction fals or completely fails.

1.5.2 Feedback Loop

In the feedback loop system, the resultant output image is fed back in again to the informd

interface system as a new input, and hence around the loop again.

By definition, a sysem exhibiting Cl-equivalence will create a Sate that is an equivdent
meaning to its input, which when fed back in as input will produce equivaent output. In such a
Cl-equivdent sysem the transformation function is actudly an identity function I, so no matter

how many times around the loop the image goes it will dways be recognised.

Of course there may (and indeed will) be variahbility in the output of the image, as that is the
definition of an informa interface. But this is one of the crucd parts of an informd interface
sysem; even though the output image varies, it Sgnifies the same date. Indeed, the ddiberate
variability of output is an important aspect of such informd interfaces. For ingance, a number
of examples of an output image d a sketched house might dl have dightly different pixd bit
maps or vector traces on acomputer graphics display, but the success of the informd interface

in retaining the gist represented, is that to dl intents and purposes they represent the same
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notion - i.e. a house of a particular style and set of essentid attributes. In this case, the
essentid attributes might be the number of windows, number of chimneys, whether the porch
has pillars, and so forth. So it would be necessary to have different Cl-equivadent interfaces for

different uses— that is such systems are domain and context dependent.

Note again that such informd representations are context and domain dependent. For
ingtance, an edtate agent, architect and young child would probably create quite different
renditions of a sketch of the same house. Also, sketches of the same house would probably be
different depending on whether they were to be used for sdling the house, designing it, using it

in acartoon, or whatever.

So ameasure of the success of an informd interface system is a pass or fall of the loopback
test. A successful informa interface system should aways be a Cl-equivdent identity function,
and s0 the loop will iterate indefinitely. A falure during some iteration of the loop means that
the informa interface is not a Cl-equivaent identity function, and the gis would not be

recoverable on input.

1.6 Informality Already?

Some systems dready display some of properties of informd interfaces. For instance, the
architecture of HyperText Markup Language (HTML), commonly used in World Wide Web
Stes, dlows for variability in output - it is up to the designer of the Web browser (for instance
NCSA Mosaic, Netscape Navigator or Microsoft Explorer) to decide exactly how text and

imeges are laid out, and how controls such as buttons might be displayed.
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The rddively new programming language Java, too, has informa dements. Its platform
independence actudly causes its presentation style to be platform dependent, as with HTML,
and hence open to interpretation and variability of output. Platform independence and
execution on a virtud meachine (the “Java VM”) can lead to vaiation in implementers
interpretation of some modes of operation, such as the exact functioning of widgets such as

buttons or edit boxes.

1.7 SoWhy Informal Interfaces?

The term “informdlity” in everyday usage suggests a lack of precison, an easing of socid or
linguigtic conventions, and in the context of this thess the use of sketch to represent rough
ideas and interactions. The benefits of informdity include being able to express a vague or
partidly understood idea, and being able to explore the essence of a concept without being
committed to its eventud form. The sketch serves as a framework on which the mind can
build. Aninformd interface is an andogy of the sketch in human:computer interaction, relaxing
the conventiona input/output congtraints of current user interfaces, in order to offer the user a

more relaxed environment.

1.7.1 Informal Graphs

Consder the case of a sporeadsheet. A request to display a graph of the relationship between
elements of the data may result in an, abeit grgphicaly pleasing, over complex and crowded
visud picture which may not bring out the essentid eements of important data relationships.
By digplaying the output in an informd, sketchy way, showing only the important gist of the

information, the user may be derted to crucid information semming from degper underlying



relationships while not being distracted by the detailed nature of the displayed information. So
the gig of the information might be an underlying trend in the way that a function varies. But the
deliberate roughness of the rendition of the graph (variability of output) would mean that the

user is not able to read too much detail into, say, the exact point a which two lines cross.

The potentid benefit of a particular type of informd interface systems might manifest itsdf in a
number of ways. For instance, in a suitable context, informa sketch-like input and output
methods (e.g. the user using pen input on a pad to convey input information, and the computer
producing graphical sketchlike output on a screen) may make it easer for the user to both
communicate desires and information to the computer, and for the computer to present the
correct level of detall. It may be the case that by presenting too much information to the user

the essentid gigt of the information does not come out.

Figure 3 represents the example of an informa graph versus aforma one.
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Figure 3: An Informal Graph Versusa Formal One

1.8 Prosand Cons:. Informality ver sus Uniformity and Stability

It isnot claimed that the gpplication of informality will dways be the best way of designing user

interfaces and their underlying representations. There are certainly cases where informality (or
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one particular aspect of it, perhaps the variability of output) is undesirable. For instance, in the
example of the design of a bridge above, dl users of the bridge when it had been constructed
would hope that it had been built from detailed drawings and plans which had been subjected

to rigorous testing and andysis.

On the other hand, in the early stages of the example of the design of a bridge as described in
section 1.4.3, it may be more helpful for designers to be able to more fredy and quickly play
around with their incomplete designs, while homing in on their preferred congtruction given the

limitations and congtraints of, perhaps, the surroundings or terrain.

Applying informdity to interface design and layout may sometimes have its drawbacks, from
both a user pergpective and aso from the viewpoint of commercid considerations. From a
user perspective, in order to construct and maintan a mentad modd of the functioning of a
program (Norman, 1986), a degree of uniformity and tability in the underlying structure of the

program is required.

1.9 A Methodology for Research into Informal Interfaces— An Overview

The thed's takes an heuristic gpproach to investigating some of the concepts and boundaries of
goplying informdity to interface desgn. It might be thought at firgt that informality could be
goplied only to the design of the upper-leve interface layer itsdf. However, there is dso

benefit in gpplying Smilar techniques to the lower interna representationa layer.

Aninitid issue to be considered is how to generate redistic looking sketch objects, such asthe
fundamentd Rough Straight Line (“RS."). Experimentation with different software dgorithms

can show the effectiveness or otherwise of differing ways of representing convincing lines; the
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metric of success being how “humantlike’ aresulting sraight line looked to the human eye. By
varying rdevant parameters of the dgorithm, and sometimes discarding seemingly irrlevant or
conflicting ones, lines that are convincing to a greater or lesser extent can be crested. "This
process eventudly leads to a seemingly successful and useful representationa structure for an
informd graight line, with the potentid of being suitable for representations of other informd

objects.

For ingtance, it is found useful (that is, the result is effective and redigic RSLS) to utilise
informal dimensions such as shakiness and period. Other attributes such as harmony prove

to be of lessvdue. Thexeinforma dimensons are described in detail in section 3.4.

Multiple instances of such primitive objects can be combined into more complex ones; for
indance, multiple straight lines can be the basis of more complex structures such as squares,
rectangles, triangles, or grids. This leads to the need for extra parameters such as constraints
(Leler, 1988) and in particular attachment. In this context attachment is a ample form of
condgraint, whereby for indance one particular end of an informa rough dtraight line is
congtrained by being attached to one end (or perhaps a more descriptive informa congtraint
such us “the middle’, which may not be exactly the middle) of another rough draight line. As
an example, in Fgure4 (1) line B isatached to line A in the middle (or, in an informd sense, it
is attached roughly in the middle), a (roughly) right angles. o, if line A isrotated by acertan
amount to the podtion as in (2), then it must follow (through the propagation of condraints)
that line B ends up Hill atached to the mid-point of A, and (roughly) a right angles. Applying
congtraints removes the need to directly apply the operation to the constrained object —i.e.

thereis no need to gpply the operation of rotation to line B.



Figure4: Exampleof constraints

With this methodology it is possible to build up a knowledge of how to create representations
of informa objects in an effective manner, and to identify a set of parameters in the form of
informal cognitive dimensions on which to base the representations. With this in place, we can
edtablish an architecture for representing structures of such informa representations, thus

providing afoundation for implementing this type of informality in user interface design.

1.10 Structureof theThesis

Having laid out an overview of the current state of user interface designs, their shortcomings,
and an opening analysis of the introduction of informality into such designs, this thess ams to
lay out a cohesive rationale and architecture for informa interface design. Fird is a detailed
review of the literature, in Chapter 2. This encompasses not only more mainstream Computer
Science reports mapping the higtory, evolution and possible future directions of interface
design in HCI, but dso (as is hecessary in a multi-disciplinary subject such as HCI) relevant

elements taken from areas of research such as Cognitive Science, Cognitive Psychology, and
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Art and Design. The later sections of the chapter bring an up to date account of what other
activity there has been in recent timesin informd interfaces. The thesis then goes on in Chapter
3 to examine in detail an architecture for informa representationd structures, the am hereisto
show that an informd interface can be much more than just a supeficd “informd-looking”
sketchy front-end to a conventiona rear-end forma operating environment and system
(dthough this is 4ill one viable and useful ingantiation). Rether, by extending the notions of
informdity down into the fundamentd building blocks (e.g. the internd representations) of a
sysem, the concept can be retained throughout in both a stand-done single node
implementation (that is, a sngular sysem whereby a sngle user interacts with a sngle
computer), and dso a multiple node sysem involving a web or network of many users
interacting directly with their computers, and indirectly with the computers and users within that

network.

After this, in Chapter 4 the implementation work that has been carried out is examined in some
detal. The theds describes a number of software programs, developed in a range of
environments depending on the scope of the system module such as*C’, C++ and Prolog (for
an Al “intdligence engin€’). The platforms used are PC compatibles, usng operating systems
such as DOS, Microsoft Windows 3.11, Windows 95, 98 and ME, and Windows NT. The
code developed is entirely applicable to other platforms such as the Apple Macintosh or Unix
systems, and given suitable development tools the code should be portable to awide variety of

platforms. The later sections of the chapter detaill some user reaction studies.
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Having lad out an oveview, the literaure survey, desgns and implementations,
representations and case studies, Chapter 5 summarises the overal scope of the work, draws

concdlusions, and discusses future research directions.

Findly, the appendices lay out the detail of much of the essence of the work. Full or partia
ligings are given of the software developed, examples are given of intermediate format

representations, and a syntax for representationa structuresis presented.

1.11 Summary of this Chapter

This chapter has discussed how informdity in computing is starting to occur more frequently in
everyday life, but how there has been little research in goplying such notions of informdity to
human-computer interaction and the underlying software representations and operations. It has
examined the advantages of sometimes having greater informality in interface and software
design, when sketch input and output can be used to advantage to dlow a user to interact with
concepts a an appropriate level of specification, rather than being required to specify

meanings that are not currently part of the usersintentions.

The chepter has st out the key concepts behind informdity in interface design, and has
defined commonly used terms. It has given some examples of how informd interface software

might be used in everyday life, and how the users might benefit from such designs.

The chapter has dso discussed both the benefits and potentid drawbacks of alowing
informdity into user interface design, but has argued the case for greater use of informdity - in

the correct context - to dlow for new types of gpplications and user interface experiences.

26



The chapter then set out a methodology for conducting research into informad interfaces, and

described the subsequent chaptersin this thesisin outline structure.
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2. From Leonardoto AARON - a Review of the Literature

2.1 An Overview of thisChapter

The study of any area of HumanComputer Interaction encompasses a necessarily wide range
of disciplines, such as computer and cognitive sciences, psychology, forma methods, art and
design, and philosophy. This chapter surveys rdated work which is of relevance to informa
interface design in a number of areas. (1) user interface design methodologies, theory and
practice, (2) the emerging use of skeiches in graphicad interfaces, (3) principles of

representation theory, and (4) design and devel opment tools and methodologies.

Although this area of synthesis of HCI research necessarily brings a number of disciplines
under one umbrella, the am of the thess is to concertrate only on those aspects of existing
literature and research which are most pertinent to informa interface theory and practice.
Many of the fundamenta topics of informd interfaces are explored in greet detal in other
disciplines, such as sketching n art and object recognition in image processing. This thess
concentrates on using the basic principles from other disciplines where necessary, and seeksto
not replicate other research directions but instead to concentrate on the fundamenta objective
of introducing informdity through the use of informa sketch input and output, and underlying
informa representations, into the computer science of user interface desgn and

implementation.

Section 2.2 introduces an higtorica perspective of the evolution of HumanComputer
Interaction. Section 2.3 presents an HCI perspective on a route towards informal interfaces:

section 2.4 discusses suitable representation frameworks, and section 2.5 summarises the
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issues involved in choosing development methodologies and tools in the implementation of
informa interface software in this thess. Section 2.6 examines the emergence of the metaphor
of Sketch in HCI, with section 2.7 detaling more recent events in the emergence of

informdity. Findly, Section 2.8 summarises the main points contained in this chepter.

2.2 Introduction — Informality in Interface Design

Informdlity can be characterised in a number of ways, and this thesis explores just one of those
characterisations - namey tolerance of input and variability of output exemplified in the
goplication of “human” sketchtlike input and output presentations with an underlying structure
of informa representation. Other conceptions of “informaity” are possble. For instance, some
might regard systems that are “human-like’, “multi-moda”, “malegble’ and “usable without
training” asinformd. It is not our intention to congtrain the application of the term to computer
interfaces. However, it is important to recognise thet the term “informd interface’ isused in a

very specific way inthisthess.

While we are nat claming that introducing informdity is necessarily a better way of desgning
interfaces, or mandating the complete re-architecture of interfaces dong informd lines, we are
cdaming that conventiond (more “formd”) interface sysems and their underlying formd
representations are sometimes lacking in their modes of functiond operation. Some of these
deficiencies can be addressed and remedied through the application of notions of informdlity to

the interface, interaction modes, and the whole “ user experience’.

Congder the higtory of user interface desgn since the conception of widely-used computer

sysems. Early mainframe computers, with their “dumb terminals’, dlowed only dow character



“tdetype’ (TTY) keyboard and monitor communication between user and computer. Primitive
graphic displays were later introduced. This was Hill the prevaent Stuation when desktop
“Persond Computers’ with greetly increased loca processing powers were introduced to the
world, starting with machines like the Altar, then progressing to the now ubiquitous IBM PC

and its compatibles.

In these systems the user was highly congrained in the flow of interaction. Input and output is
very formd: the user had a dngle method of input, a keyboard. The user was highly
congtrained as to how to communicate with the computer, such as having to use an arcane st
of commands (e.g. Unix's“Is-al” or “rd”) the syntax of which had to be followed exactly to

avoid a breakdown in communication (Banahan & Rutter, 1982).

Smilaly, output to the user was tightly congtrained; not only in the physca medium (an
abitray rectangular grid of an equdly arbitrary number of lines and columns of textud
characters or bit maps), owing its design principles to dectromechanicd, rather than human
factors condraints, but aso in the syntax of the command language output. The user was
continudly having to adapt his or her modus operandi to that of the computer. Of course,
“humantoriented” presentation is not necessarily the same as “informa” presentation, but
informdity in presentation is one way that human-oriented output can be achieved, and may be

effective when used correctly.

Progress was made with the advent of Graphicd User Interfaces (GUIs) fallowing the initid
work of the Star development team at Xerox’s PARC (Johnson, Roberts, Verplank, Smith,
Irby, Beard & Mackey, 1989) principles later adopted by product developments at, for

ingtance, Apple with the Lisa and Macintosh computers, and Microsoft with the Windows
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operding system. However, from an informd interface pergpective not much has changed;
output is certainly in a more visud form. Typicdly, though, input is through the conventiond
keyboard, with an extra dimenson being added by the mouse. But on closer inspection the
user is dill congrained by afinite set of commands (the “pull-down” menu system), and hasto
accept whatever presentation system is on offer. The interface is a veneer on top of a
conventiond operating sysem architecture; in the case of Microsoft Windows this is literaly
S0, dnce it is a protected mode graphica environment built on top of a 16-bit red mode

operaing system with its design from a previous decade.

2.2.1 Prior Developmentsof Influence

Sketchpad (Sutherland, 1963) and ThingLab (Borning, 1979) have been an influence on this
thesis. Both are graphicd interface systems alowing users a high degree of expressveness and
control in their inputs, and have strong underlying operation engines. They show the developing
path of graphica interfaces, object-oriented desgn and development, and the notion of using
condraints. In the terms of this thesis they both exhibit some tolerance of input, dthough little
variability of output. But they were instrumenta in spurring on the thesis' centrd theme of using
sketch as an input mechaniam, and indeed extending this to deliberately maintaining the output
aso in a sketch-like form. This leads to an analyss of the requirements for the underlying
representationa structures, which while loosdy based on Sketchpad and ThingLab (in ther
use of congraints and objects) enhances their congtructs through the redlisation of the need for

the addition of informd types of cognitive dimensions, aswell as prototypes.

Ivan Sutherland's (ibid.) seminad work on developing what was truly the world's firs GUI,
Sketchpad, a MIT’s Lincoln Laboratory on the TX-2 computer provided the basis for much
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of modern-day HCI. His system, based on alightpen, abank of switches and a CRT display,
was the firg interactive computer graphics interface. Interestingly, athough “sketch” by name,
Sketchpad was not particularly “sketchy” by nature. Although a hand-held lightpen was used
for input, the system was redlly designed to produce highly precise drawings with perfect lines

and corners. It aso pioneered the use of congraints on the geometrical objects.

Alan Borning's ThingLab (ibid.)) is a condraint-based smulation system developed in the
object-oriented programming language Smdltalk. ThingLab, heavily influenced by Sketchpad,
isagraphica system designed to alow a user (a programmer, redly) to set up operators and
congraints between objects, and to smulate smple physica experiments. ThingLab does not
have any embedded knowledge of any particular domains, but provides tools and mechanisms

for creating applications.

2.3 Informal Interfacesand HCI - The Traditional Literature

The discipline of HumanComputer Interaction is now well establised in the fidds of
Cognitive and Computer Science, Psychology, Ergonomics, and other areas of research and
devdlopment. This multi-disciplinary subject draws in researchers, implementers and users
from dl waks of life and work, and is the subject of awide range of study. Its basic concepts
are now wel understood and documented, and there are many publications on the principles
of HCI (e.g. Preece, Rogers, Sharp, Benyon, Holland & Carey, 1994). In this book, Preece
et d. discuss the now “conventiond”  aspects of HCI: cognitive frameworks, perception and
representation, mental models, interface metgphors, input, output, interaction styles, and design
methods and techniques. They (ibid.) state that “... HCI is about designing computer systems
that support people so thet they can carry out their activities productively and safdly...”. They
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point out that Donald Norman (Norman, 1988) identifies two key principles that help ensure
good HCI: visibility (controls need to be visble and have good mapping of ther effects) and

affordance (controls should suggest, i.e. aford, their functiondity).

Preece et d. (ibid.) highlight a divergence in the approach to research on either Sde of the
Atlantic in the 1970s and 1980s. They point out that American pioneers were more concerned
with how computers could enrich lives, make them easier, and facilitate creativity and problem
solving. European researchers, meanwhile, were congtructing theories about HCl such as

usability, and the development of operationd criteria and assessment metrics.

They (ibid.) define a list of disciplines contributing to HCI: (a) computer science, (b) cognitive
psychology, (c) socia & organisationd psychology, (d) ergonomics & human factors, (€)
atificd intdligence, (f) linguistics, (g) philosophy, (h) sociology, (i) anthropology, (j) and
engineering & design. They go on to highlight the fact that graphical representation is the
man method used in conveying information a the interface, and that mental models are
important to people when interacting with devices and systems. Studies have been carried out
(eg. Rogers et d., 1992) to investigate this, and the generd assumption is that people do use
some type of modd, but that it is often incomplete and vague. This is an important issue for
informa interfaces in HCI, where the tolerance of input and variability of output may be
used ddiberatdy to try to more closdy coincide with a user’s (possibly vague) mentd model
of the systlem. Conceptua models are important for informa interfaces too. The desgn modd,
the user’s modd and the system image (Norman, 1986) is a classc architecture for a

conceptud model. Here, the internd representationd structure in the system image of the



informd interface system is ddiberady “informd”, to avoid introducing meanings that do not

match those intended by the user.

Preece e d. (ibid) aso include a discusson on input devices, the classic ones being
keyboards and mice. They go on to discuss pen input devices, but only in the context of
handwriting recognition and gesture recognition. An informa interface, as described in this
thes's, uses pen input a afundamenta leve: as a naturd stylus device conveying sketch input.
Output devices are the other haf of the input/output equation. They (ibid.) discuss the
conventiona output devices used in HCI: Graphicd User Interfaces (GUIs), sound, virtua
redity and multimedia. The informd interface (as described in this thess) uses conventiond
graphicd output, but in a form that is designed to avoid conveying information not intended in

the object represented.

The authors (ibid.) discuss on interaction styles, such as command entry, menus and
navigation systems natural language dialogue, and direct manipulation. Informa
interfaces as presented in this thes's do not assume a new and unique form of interaction style:
conventiona ones (principaly menus) are used, athough there is scope too for the use of

direct manipulation.

Other such works, eg. Carroll (1991) and Thimbleby (1990) also set out the basic principles

for HCI: the fundamentd cycle of input, output, and internd models and representations.

The human factors of graphicd human-computer interfaces have been anadysed by Maguire

(1985). Designers have a wide array of input and output devices and fadilities avalladle. This



subject is of rdevance to informa interfaces as presented in this thess, as amilar input

techniques, especidly inking, are utilised. In this paper, drawing techniques are discussed:

1. point plotting (drawing straight lines by specifying Sart and end points)

2. polygon filling (filling an endosad polygon by specifying any point within it)

3. erasure

4. autoplotting or inking (leaving atrall of ‘dectronic ink’ like a pen; freehand sketch can

be accomplished in thisway)

5. rubber-banding (dynamicdly stretching agtraight line from a gart point to an end point)

6. grid snap (connecting dl inputs to the nearest point of a background grid, thus enabling

precise drawings to be created more easily)

7. libraries of symbols and figures.

Interestingly, Preece et d. (ibid.) contains a discusson on formal versus informal groups.
“An increesing number of researchers believe that informal, spontaneous, communication is as
important as forma communication, if not more important...”. However, thisuse of informdlity
is not directly rdlevant here. The use of “informa” sketching described in this thess relates to
the representations employed in communication rather than the protocol of communication.
The authors (ibid.) so congder, in envisoning design, the use of sketching. They (ibid.) state
that “ sketching techniques can be useful for exploring dl kinds of designidess...” and suggest
the use of visud braingtorming (Verplank, 1989) to explore dternative desgns. Clearly, this

stresses the \Alue of paper and pencil as argpid means of producing desgns. However, it is
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relevant to thisthesisin the sense that the ideas operated through this kind of process are likely
to be a a generd leve of specification and systems should not force the ger to specify

meaning other than that intended. Informd interfaces offer an gpproach to this problem.

Dix et d. (Dix, Finlay, Abowd & Bede, 1993) discuss emerging technologies such as multi-
sensory  sysems, speech, handwriting and gesture recognition, and animation. Ther
introduction to handwriting recognition is mainly concerned with character recognition in pert
based systems. But they go on to state “if we were to design an organizer from scratch we
may well decide to do away with the keyboard ... we can consder dl sorts of other waysto
interact with the system ... we may decide to use drawings to tell the syssem what to do ...
the different input device ... opens up a whole host of dterndive interface desgns and
different posshilities for interaction”. This is a gimulus for the sdection of the informd
interfaces developed here, i.e. an interface system primarily based on using sketch for input

and output. In other words, the interface would have wide application.

This thesis ams to build on these foundations for conventiond HCI, and to utilise the existing
methods and ideas. So, the conventiond framework of HCI design, such as the adoption of
the stages of interaction tasks, psychological aspects, design, and evaluation, is utilised

(Preece & Kdler, 1990).



The use of sketch recognition has been the subject of study in the field of computer graphics
interaction techniques. For example, Foley et d. (Foley, Wallace & Chan, 1984) describe a
mechanism for usang a sketch recognition system to determine commands that are entered by

using a device such asamouse, atablet or alight pen in a sketch-like manner.
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Figure5: From Foley, Wallace & Chan

Inthisway gestures can be sketched in to provide one way of having command and control
over a computer system, as illugtrated in Figure 5. Strangely perhaps, they (ibid.) use forma
diagrams (draight lines etc.) to illugtrate their sketched gestures, ingtead of actud examples of
sketched gestures. The relevance here to the theds is the use of an informd means of

interaction — sketch — as away of providing input to a computer system.

Although not directly relevant to this thess, there are a number of instances in the literature
where researchers have investigated the nature of other forms of informa communication and
interaction between users. This is of interest in the context of this thess, as it helpsto set a
framework within which the research presented here can St.
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Fish, Kraut and Root (1992) performed an evaduation of video as a technology for informd
communication. They gate “Collaborations in organizations thrive on communicetion that is
informa because informa communication is frequent, interactive and expressive...”. The
authors focus is on therr audio/video technology system, CRUISER. They conclude that
“some form of desktop videoconferencing could prove useful in preserving informd

communication channds for geographicaly digtributed organizations’.

Hollan and Stornetta (1992) aso identify the need for informa interaction. They date that
there isafdl-off in likeihood of collaboration between researchers as distance increases. They
go on to Sate this occurs “because of the large number of informd interactions necessary to

create and maintain working relationships’.

Researchers a the Xerox Pao Alto Research Center (Elrod et d., 1992) have developed an
interactive video whiteboard system cdled Liveboard. This system provides for stylus-based
group interaction with a computer-supported whiteboard system. Users can interact with,
control, and annotate (with sketch and handwriting) conventiondly displayed computer
graphics. A Liveboard application Tivoli is later used to examine informa workgroup
meetings (Pederson et d., 1993). Thisis further explored in Moran et d. (1998). In this paper
the authors develop the idea of using a freeform eectronic whiteboard metaphor to enable

usersto interact using pentbased scribbling and editing.

Rescarchers at Hewlett-Packard' s Bristol research laboratory (Whittaker, Frohlich & Daly-
Jones, 1994) dudied informa communications in the workplace. By this they mean it to be
“... brief, unplanned, and frequent...”, supporting a number of different functions the

execution of work-related tasks, co-ordination of group activity, transmisson of office culture,
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and socid functions such as team building. The authors sudied methods for (often remote)
informa communication such as video and audio sysems, “glance’ sysems, and roaming
conversations. However, they did not study sketch (perhaps on a whiteboard or a napkin) as
a means of informa communication. They conclude with a note on the “sheer brevity” of
informa communication. They date tha this may be because, in the case of formd
communicaion, if participants are uncertain that they may meet frequently then they may
condense multiple issues into a dngle interaction. However, in the case of informd

communication, familiar interactants know that future conversations are guaranteed.

Zhao invedtigates gesture-based diagram editing (Zhao, 1993), giving some ingghts into the
recognition of hand-sketched diagrams. Most other gpproaches use either gesture recognition
or visud language parsers, wheress this author proposes an incrementa paradigm of gesture
recognition and a co-operative communication for pattern recognition and diagram parsing. He
(ibid.) identifies the need for both a Low Leve Recogniser (LLR) and a High Leve
Recogniser (HLR) - the LLR acting a a sngle stroke level, and the HLR trandforming these
basc symbol sets into editing commands. In the context of this thess, this is important as it

later helpsto st out aframework for an informd interface system.

2.3.1 Informal Interfacesand Computer Vison

This thes's does not presume to cover the classic subjects of shape recognition and the
interpretation of line drawings from Computer Vison (Mar, 1982 and Marill, 1989).
Computer Vison is more concerned with the problems associated with recognising lines,
shapes and relationships (e.g. behind, in front of) from a photographic or other bit-map
image. These scenes usudly come about in a different fashion from those found in the type of
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informa interface system described in this thesis. In computer vison, the scene is presented to
a recognition engine as a fait accompli, typicaly as the output from a video camera or
scanned photographic image. The problem then is to extract the embedded data (in 2-D or 3-
D) from the underlying clues of lines, curves, shades and o forth (Leclerc & Fischler, 1992).
On the other hand, informa interface theory as presented in this thes's is more concerned with
the andysis (in red-time or a post-input time) of sketchtlike data input by a user, its internd
representation and potentid interpretation, and the corresponding utilisation of sketch-like
output to convey the appropriate leve of informdity to a user. However, the literature of
Computer Vison does provide useful agorithmic and representational concepts relevant to
informd interface systems, such as best-fit schemes for straight lines (Pao, Li & Jayakumar,

1992, and Chattopadhyay & Das, 1991), and shape recognition (Marr, 1982).

Informa interfaces have one advantage over computer vision: the input mechanism accepting
line drawing data from the user is able to receive (and possibly process) that dataiin real time,
which leads to associated extra data which can be inferred. For instance, aline drawing of an
object such as a house will have been drawn in a particular sequence: perhaps firg the outside
lines of the rectangular body of the house, then the windows and doors, then the roof, and
findly the chimney. This tempord data may hep in resolving ambiguous images. The lines
comprising the sdes of a Necker Cube will have been drawn in a particular order, which may
(arguably) be used to interpret the desired resultant image. Reisberg (1987) explores thisin his
paper on “Externd Representations and the Advantages of Externdizing One's Thoughts’, in
which he argues the importance of externdisng one's thoughts, i.e. “...by sketching the

content of mentad images...”



Negroponte (1971 & 1973) defined sketch recognition as “the step by step resolution of the
mismatch between the user’s intentions (of which he himsdf may not be aware) and his
graphica articulations. In a design context, the convergence to a match between the meaning
and the graphicd gtatement of that meaning is complicated by continualy changing intentions
that result from the user’s viewing his own graphicd satements” His HUNCH program was

one of the early attempts a using inferences from a sketch to end up with afina design.

Note that an informa interface system, as described in this thes's, faces many of the problems
of computer vison. Some of these problems might cortinue to be intractable. For example, it
may never be possible to develop systems that are able to interpret graphicd input in a way

that exactly matches what the user intended.

Citrin and Gross (1996) describe a technique for the recognition of diagrams, whereby low-
levd and high-level components are utilised. The authors detall a method for pentbased input
and diagram recognition using a PDA and desktop computer. The PDA performs low-leve
shape recognition and the desktop performs high-leve recognition. This is an architecture
smilar to that employed by Zhao (1993), and the one used in the implementation of an

informd interface described in thisthess.

As Straforini et a. (1992) state, “the recovery of the 3D sructure and the recognition of
viewed objects from TV images are among the main gods of computer vison...”. They
describe a system in which a low-levd vison module recovers line drawings from red images,
and a high-level reasoning module to further process the image. Marill (1989) examines the
problem of how the human vison system produces three-dimensond interpretations of two-

dimensond images. Other shagpe recognition techniques, for ingance using the Straight Line
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Hough Transform (Pao, Li & Jayakumar, 1990), dso exist. The Hough Transform is a wdll-

known method for the detection of parametric curves in binary images.

2.4 Some Representational Frameworks

This theds proposes a dructure for informd interfaces in Chapter 3. However, the key

concepts behind a representational architecture are reviewed first here.

Fundamental to the representation proposed is the concept of a primitive prototype and
associated specific parameters. As an example, consgder arough hand-drawn sraight line. In
this case, the gist of the representation isa ample straight line. The primitive prototype of the
representation is the abstract geometricad perfect straight line of no thickness that passes
through the locus of points according to a paticular best-fit dgorithm. The associated
parameters are a particular set of attributes that further adequately describe the actud line, eg.
ameasure of the shakiness of the ling, its colour, and so forth. This viewpoint is derived from
two main sources.: the concept of frames (Minsky, 1975) from Knowledge Representation

theory, and parametersin the form of Cognitive Dimensons (Green, 1989).

2.4.1 Frames

The conceptua structure of frames suits the prototype/parameter congtruction well. A frameis
a structure that represents knowledge about a limited domain, and is basicdly congtructed of a
fixed prototype and a number of associated slots that are occupied by fillers. The use of
frames has been gpplied to a number of problem areas of Artificid Inteligence, such as
representing knowledge for aclass of recognition problems (Kuipers, 1975). Frames have
as provided some use in programming languages, the Apple Newton PDA being one
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computer with a development environment programming language based on frames. Frames
have dso been ingrumentd in the development of object-oriented architectures and

programming techniques, used heavily in the software implementations in the thes's.

2.4.2 Cognitive Dimensions

Green proposed the notion of “cognitive dimensons’ (Green, 1989) as a descriptive
vocabulary to nore accurately describe relevant interface qudities in cognitive rather than
computationa terms. He introduces notions such as viscosity (a measure of how resstant
representations are to change) and premature commitment (a measure of whether a user
becomes fixed to one option too early in the interaction process), and explores these concepts

in aseries of papers (Green, 1990, 1991a and 1991b).

Such cognitive dimensons provide a bads for developing the notion of attached (cognitive)
parameters. Cognitive dimensions in genera describe aspects of information structures, so that
these aspects of an interface can be described in the same way as describing an object in
terms of physical dimengons (such as weight or length). According to Wood (1992), Green
origindly proposed cognitive dimensons as a s&t of concepts for characteriang different
computer programming languages. However, the concept of cognitive dimensions lends itsdf

well to describing interfaces.

2.4.2.1 In Defence of Using Cognitive Dimensionsin Informal | nterfaces

The concept of cognitive dimengions is taken up in this thess and later used as a badis for
fillers for the dots of prototypes (in the yle of frames), in the guise of informal cognitive
dimensions such as shakiness, thickness and period. These informa cognitive dimensons
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are not cognitive dimendions in the originad style and sense of Green, as they are varying in
nature and necessarily of different types. Nevertheless, Green's use of cognitive dimensonsis

adimulusfor the use of amilar informa counterparts, as used in thisthesis

2.5 Some Software Tools

Before going on to examine some of the threads of development that have been influentid in
forming the basis for this thesis, it isingtructiona to review some of the background tools and
technology available to ad in congtructing representational structures and to help develop

demondtration software.

Although the architecture of frames (Minsky, 1975) outlined in section 2.4.1 provides for an
gppeding basisfor interna representations, there are few software development tools available
using the concept. To some degree frames have lead on to the more generalised concept of
object-oriented analysis and design (Booch, 1994), as used in some of the software
implementation in this thess using C++ (Borland, 1992). Other software in the thesis has been

developed inthe dlassic ‘C’ programming language (Kernighan & Ritchie, 1978).

Of note is the use of the “Artificid Inteligence’ programming language, Prolog (Clocksin &
Mélish, 1981), to develop some of the core “intdligence engineg’ software (Amzi, 1995).
Prolog is wdll suited to the problems encountered by the recogniser engine of the software
implementation described later, in section 4.4.6. Here, the problem faced is to derive higher-
level congructs (such as “triangle’, “square’ and “house’) from sets of lower-levd primitives
(eg. rough draght lines). The inteligence engine is supplied with raw data in the form of a

prototype (aline) and attached parameters (such as length, start point, and so forth). Prolog’s



backtracking and cuts are well suited to this type of problem — deiving the mid-leve
congtructs of attachment (actualy a condraint), and from these the high-level congtructs of
primitive geometrica objects (eg. atriangleisthreelines A, B and C, with A attached to B, B

toC,andCto A).

2.5.1 Constraintsand Constraint Programming Languages

It will be seen later (in Chapter 3) that part of the structure for an interna representation of
informd interfaces rdies on an explicit or implicit use of constraints (e.g. Borning & Duisberg,
1986). For example, if four lines are drawn in the shape of a square then they are congtrained
by the fact that one joins to the next a its end point, and that next lineisjoined at its end point

on to the next one, and so forth.

Figure 6 gives an example of a sketchlike square generated by one of the software programs
implemented in this thess (cdled “i-Fax”). Its interna representation is composed of the
informa objects of four rough sraight lines, structurdly congtrained through the attachment of

onelineto another.

I The Informal Fax: i-FAX

Fax Edit Dsbug Hslp
FAX TRANSMISSION
To:
From: lan Cullimore
Date:

Page 1 of: 1

|

Figure6: A sketch-like squar e generated by i-Fax
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There are two types of congraints utilised in the informa interface system described in this
thess global and structural. Globd condrants are informa cognitive dimengons that are
goplied uniformly to objects throughout their lifetime, such as shakiness, period, thickness,
length, and direction. This system uses one sructura congrant, attachment. Other systems

might utilise other structurd condraints such asabove, to_the right_of, and so forth.

Condraints are powerful in that if this square were to be rotated, there are a number of ways
that this could be accomplished. For instance, matrix manipuation could be gpplied to the
pixd bit-map array that represents the screen display. However, if condtraints are applied then
just one of the lines needs to be transformed to a new position — the rest by their attachment
must follow suit. (Indeed, attachment is the primary condraint utilised in the software

developed for thisthess).

The concept of condraints is an important one for the type of informdity in interface
congtruction described by this thess, asit lends itsdf naturadly to being a useful rdationship to

bind primitive graphica dements (such asrough straight lines) together.

This concept was used much earlier in lvan Sutherland’s semind work (Sutherland, 1963) on
the condraint-based graphica interactive system Sketchpad, and in Alan Borning's ThingLab
(Borning, 1979), as later expanded by Borning & Duisberg (1986) and others such as Stefik
(1981). There has been continuing work in the fidd of congtraint systems, such as multi-way
(as opposed to one-way) condraints in the DeltaBlue agorithm (Sannella, Maoney, Freeman
Benson & Borning, 1992), congraint-based dataflow (Kass, 1992), and CONSAT, a system

for congtraint satisfaction (Gusgen, 1989).



2.6 ThePower of the Sketch

There has, a the same time, been an increasing awareness of the power and usage of
diagrams and sketching in rdated disciplines. Lansdown (1985) points out that computer
graphics designers tend to am at photographic redlism when “convincing naturaism” might be
more appropriate. Bundy (1977) demonstrates a need for diagrams to describe problems in
the mechanical world, such as whether a block diding down a dope (the “roller coaster”
problem) will reach the top of the other sde, or loop the loop. His solution is to describe
aspects of the problem from the diagrams as symboalic descriptions, to be passed to a generd

problem solver for the mechanica world.

As Cohn, Randdl & Cui (1993) date in their work on quditative spatid relationships, the
development of ontologies for spatia logics based on regions has only recently started to
become a serious research activity. They describe their work of refining a system for
quditative reasoning, based on the relationships between dements of diagrams of systems and
object such as INSIDE, OUTSIDE, JUST_OUTSIDE and so forth. Although their examples
are based on reasonably well drawn diagrams, it is interesting to note that rough sketches

would aso serve the same purpose in most cases.

An increasing amount of research is being conducted in the use and understanding of diagrams,
both in generd and in specid cases such as graphs. Researchers such as Preece (1983) and
Lohse (1991) have examined the issues behind understanding graphs. As Lohse states, despite
the increesing importance of grgphics in the desgn of information sysems, there is only a
partid understanding of how people perceive and process graphic information. He indicates

how research into cognitive modds for the perception and understanding of graphs can be
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goplied to informdism and how rough-sketch representations of graphs can be inherently
interesting as informa renditions of information. One of the key concepts from informa
interfaces is the relaxation of the invariance of output by computers, so it isreveding to sudy
how people perceive and process meaning from graphicd information, athough thisis not the
primary focus of this thess. However, the understanding of graphs is one example of an
goplication in the future of some of the eements d the type of informd interface sysem
described in this thesis. Lohse describes a computer program UCIE (Understanding Cognitive
Information Engineering), which modds the underlying perceptud and cognitive processes
used by people to decode information from a graph, and consders results from the anayses of
bar charts, line graphs and tables. His mechanistic approach is to first determine a logicd

sequence of eye fixations that will be able to decode the information, and then cadculate (from
known observations about Short Term Memory, reading times, and so forth) how long this will

take.

Lewis, Mateas, PAmiter & Lynch (1996) provide an example of the potential power of a
sketch-like graph, if used in the gppropriate context. Their paper presents a processfor usng
ethnographic data to drive design in a product development environment. Part of their process
involves collecting data through andyss meetings. Interestingly, they illudrate the tempord

dructure of an observationd data analyss meeting in their paper through the use of a sketch
like graph, shown in Fgure 7. Asthe authors (ibid.) Sate, “(the figure) is not meant to indicate
the precise tempora structure but rather to provide an example of a ‘typicd’ anaysscydein
such ameeting”. So the authors have not tried to represent the information that they are trying
to get across to the reader my means of aformd, perfectly drawn, graph. Instead, they opted
to convey a rough impresson of what they were trying to show by means of a more sketchy,

48



rough-drawn, and informa graph. In this way, the reader should be able get a feding for the
genera gigt of their point. However, the reader should dso redise that it is not gppropriate to
read too much in to the precise dements of the graph. It would probably not be appropriate,

for ingtance, to interpolate or extrapolae the line data to a high degree of precision.
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Figure 7: An example of arough sketch-like graph from Lewis, Mateus, Palmiter & Lynch (1996)

Thereisalarge body of work on using stylus input with computers. For ingance, the Nationd
Physcad Laboratory illustrate the need for sketch input and subsequent andyss in ther
Electronic Paper project (Brocklehurst, 1989). In this, a user can write on aflat pand dislay,
the handwritten symbols, drawings, characters and script are interpreted, and the “intended”
result is displayed on the screen. NPL Electronic Paper presents one primary characteristic of
an informd interface: tolerance of input. The user is able to input data in the form of sketches
and gestures, which the software then “cleans up” for subsequent display. For ingtance, two
rough axes for a graph could be input by a user, and their end points annotated. These would

then be tidied up by the software and displayed as perfect straight line axes, with intermediate



annotation tick marks aong the axes. Then the user can enter data points, and the “ correct”
type of curve sdected (e.g. linear, quadratic or whatever). This curve is then caculated and

drawn by the program.

There are other examples of the continuing research into the use and understanding of graphics
and diagrams, such as the examination of the intersection of computer vison and computer
graphics (Montavo, 1985), and the acquisition and validation of quditative visua properties
(Montalvo, 1990). In this paper, a “knowledge visudiser” software program represents
graphica objects, properties and relations as frames. Properties, which are represented on a
computer graphics screen as prototypes, can be “incrementdly combined to form more
complex properties and objects’. Each property, represented by a frame, has a dot for the
property itself, as well as a generator, recogniser and echo function. So for instance, for the
property of SIDEDNESS, a triangle would fill the dot with the value 3, asilludtrated in Figure
8. Thisis of relevance to the construction of an informa interface as described in thisthess, as
it is an example of an internd representationd structure based on a frame-gyle prototype and

associated fillers for the slots dong the lines proposed in Chapter 3.
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Figure 8: From Montalvo (1990)



Thinking with diagrams, and the emergence of visua programming languages, is a continuing
theme of the use and power of gragphics in traditional domains. Green and Blackwell (1996)
cite some of the reasons behind this, such as the fact that people find it easier to ded with the
concrete (i.e. visua representation) rather than the abstract, that human cognition is optimised
for vison, (i.e. shapes are easer to process than words), and visud programming makes
semantic relaionships explicit (in the form of apicture). The subject of thinking with diagrams
is relevant to informal interfaces as described in this thesis because of the association of

diagrams with informd, familiar, sketched renditions.

Ancther hugdy influentid figure in guiding the synthess of art, sketch and computers has been
Harold Cohen (McCorduck, 1990). Although an accomplished artist by training and vocation,
and knowing little if anything about computers (a a time when they were ill in ther infancy),
Cohen virtudly threw away his established career to pursue a vision of creating art through
computers. His computer program AARON, “the only program currently in existence capable
of the autonomous generation of works of art” (Sharples, Hogg, Hutchison, Torrance &

Y oung, 1989), is capable of creating sketch-like drawings of artistic scenes.

Fgure 9 shows such a drawing created by AARON. From a computer science perspective
AARON used not to be, in a sense, well founded architecturdly. It is true that AARON is
generaly condgdered to create origina works of art, judged by most to be aestheticaly
pleasing and possbly indigtinguishable from work that might have been created by a human.
On the other hand, Cohen is not a computer software engineer by trade or training (and would

probably never clam to be such, ether), and in the early days of AARON'’s development the
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computer program was a jumble of hard-coded software. Later development has put

AARON'’s software on amore structured and frame-oriented basis.

A discusson of AARON is rdevant to this thess because it is an example of internd
representationa structures used to depict humant-like graphica output. It is dso an example of
the use of variability of output, as AARON somewhat unpredictably produces smilar dthough
not identica pictures of the same theme. So the overdl gist of a scene might be the same (eg.

agroup of people standing amongst trees), dthough the precise detall might not.
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Figure9: Harold Cohen, 1986 (M cCorduck, 1990, p 6)
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In at and design there has been much work done in andysing the principles behind sketching.
Fish and Scrivener (1990) date “Leonardo da Vinci advocated the use of untidy
indeterminacies for working out compaositions, because he believed that sSketches stimulated
visud invention”. Also, according to Fish and Scrivener, “...sketches are incomplete visud

dructures that amplify the inventive and problem-solving uses of mentd imagery...”, and that
Negroponte (1977) noted that “sketch recognition is as much a metephor as fact. It is
illugrative of an interest in those areas of desgn marked by vagary, inconsstency and
ambiguity. While these characterigtics are the anathema of dgorithms, they are the essence of
desgn”. Although the authors were talking about sketch in a somewhat different way, it is a
gimulus to the research in this thess. Informa interfaces as described in this thess are
inherently sketch-like in nature. Further work has been made in the area of Computer
Supported Co-operative Work and Collaborative Design. Scrivener and Clark (1994) argue
that the sketch, far from being “... anachronigtic ... atechnology out-performed and perhaps
to be superseded by computer based imaging technology”, in fact is gill a vitd function
because “... the characterigtics of the sketch are ones that support and facilitate the kind of

visud reasoning engaged in the early stages of design, as doesthe actud activity of ketching”.

These authors, dong with others (Scrivener, Harris, Clarke, Rockoff, & Smyth, 1993, and
Scrivener, Clarke, S, Clarke, A., Connolly, PaAmén, Smyth, & Schappo, 1994), furthermore
argue the case for dispersed work group design efforts being supported through the use of
interactive red-time sketching functiondity. In such a system, designers separated by large
distances (and possibly even located in different continents and in different time zones) would

use ashared computer “sketchpad” system connected through telephone lines.



Bafield, van Burgsteden, Lanfermeijer, Mulder, Ossewold, Rijken and Wegner (1994)
describe some examples of sketch icons, in an aticle on interaction design at the Utrecht
Schoal of Arts. In this article, much use is made throughout of sketch instead of more formal
diagrams and tables, asillugtrated in Figure 10 and Figure 11. This is a continuing trend in
usng such informa modes of presentation where once forma methods would have been
chosen. This may be in part to do with technology (the ease with which sketches can now be
combined into word processed documents, for ingtance), and in part to the authors (in this
case notably a collection of Art School designers) desire to convey a particular impression of

content style.
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Figure 10: Sketch used in a paper on Interaction Design, from Barfield et al. (1994)
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Figure 11: Sketch-likelcons (Barfield et al. 1994)
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Citrin and Gross (1996) have been working in the College of Architecture and Planning at the
Univerdty of Colorado on the concept of distributed digital sketchbooks, using a front-end
Persond Digitd Assgtant (PDA) hand-held computer (an Apple Newton), and a companion
back-end computer (an Apple Mackintosh). The back-end computer provides support to the
PDA in the form of higher processng power and greater storage. Here the need is to, for
example, asss tedecommunications sarvice engineers in the fidd. The authors explain that
typicadly aworker arrives a a dte to repar a unit, only to be confronted by a confusing tangle
of wires, the worker’ sinitid task is usualy to make a sketch diagram of the messto try to sort
out exactly what to do. The authors PDA system dlows the worker to input these sketch
diagrams, for a first-pass recognition atempt, and then subsequent up-load to the back-end
conventiond computer for further processing. In this way these early, and immensdly useful,
sketches are not wasted (because the same need would arise to make yet another sketch the
next time an engineer is caled out), but instead saved, edited and otherwise modified for later

download.

The back-end to the system is their (ibid.) Electronic Cocktail Napkin project (Gross & Do,
1996a), as depicted in Figure 12. In this paper, the authors argue: “in dl desgn domains (from
software to submarines), diagrams and sketches play a key role in the conceptud, formative
stages. We want to support this drawing and sketching, the kind you might do on the back of
an envelope or a cocktal napkin. It is quick and rough, but it lets you explore and explain

badc dternatives quickly”.

In a further paper (Gross & Do, 1996b), the authors state “interfaces for conceptud and

cregtive design should recognize and interpret drawings. They should aso capture users



intended ambiguity, vagueness, and imprecision... Freehand drawing can provide this

information and it isa naturd input mode for design...””.
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Figure 12: The Electronic Cocktail Napkin

2.7 And So Tolnformal Interfaces

Mundie and Shultis (1991) consider progress in computer systems. Although many aspects of
the concept of “informalism” and “the informal” were presented and examined, there was no
gppreciation at that venue of its potential gpplication to HCI and user interface design. For
example, Reeker (1991), in his paper on Informalism in Interfaces, studies some examples
of adaptive interfaces, and make an analyss of concepts such as representations of visua
knowledge, and projecting cognitive representational Sructures onto  computational

representations.



Fisher (1991) examines the question “What is Informaism?’ and reaches a number of
conclusons. He identifies short-comings with forma methods arisng from the nature of the
physcd versus abdract world, in that they assume finite descriptions, often require
completeness, consstency and precison, and are inadequate for describing and reasoning
about the physicd world. Fisher concludes that, while informa systems must encompass and
exploit formd methods, they must be intensonal and incomplete, they must manage

inconsistency, they must be nonaxiomatic and prototypical, and will be imprecise.

Meyer and Crumpton (Meyer, 1996 and Meyer & Crumpton, 1996) apply informality to user
interface design and architecture. The authors (ibid.) state “researchers and developers are
discovering the need and importance of sketch-like representations in the creative process’.
However, they identify the problem that such applications usudly present the user’s rough-
looking sketches within the formaity of a WIMP interface. This creetes a problem of a visud
jar between the two competing looks: “the ‘look’ of the computer-generated interface does
not reflect the ‘fed’ of the pen input ... (which) is fluid, dynamic, persond and informd, but

the computer-generated graphics look linear, Satic and forma”.

Their implementation of an informd interface, EtchaPad (Meyer & Crumpton, 1996), is an
interesting one in that the widgets and window shapes take on a rough-looking fed, as if
generated by sketch by a human hand. An example of EtchaPad's style of interface is show in

Figure 13.

EtchaPad displays two key characteristics of an informd interface as espoused by this thes's,
tolerance of input and variability of output. However, it gopears that while an informa

interface metaphor is utilised for the front-end graphica display, the back-end (internal)
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representations are conventiond, and are not in particular concerned with the notion of the

cognitive gist of the representations.

Figure 13: Meyer and Crumpton's EtchaPad (New York University M edia Resear ch L ab)

In Chapter 3, the informd interface software that has been developed is described in detall.
Any software system that presents its output in a rough sketch-like appearance requires
dgorithms to generate such sketchy lines, and the agorithms used in this thess
implementations are described later. These agorithms were developed over a period of time
through experimentation, and subseguently tuned to give a more naturd and familiar
appearance. As a comparison, Meyer and Crumpton (1996) describe a number of methods
that they experimented with to try to get pleasing results for drawing informa-looking rough
lines, the best of which they decided was to use a stochastic noise function dgorithm
independently developed by Perlin (1985) at the New Y ork University Media Research Lab.

Examples of their informal-1ooking lines and widgets are shown in Figure 14.



[]toggle O roggle rougtiess

Figure 14: Rectilinear versusInformal graphics, from Meyer and Crumpton (1996)

Meyer and Crumpton’s approach is to give a natural, familiar sketchlike appearance to the
user interface, and for this the Perlin noise function provides a good solution. This thess am,
however, is partly to investigate the underlying cognitive processes inherent in usng informdlity
in interfaces, and for this the Protoytpe/Dimension Mode (PDM) architecture, detailed later in

section 3.6, is more suitable than using other methods such as the Perlin noise function.

Daviset d. (1998) investigate using PDASs such as the 3Com PamPilot to enable usersto take
eectronic ink-based collaborative notes in free-form way. The authors (ibid.) describe a
ample, “informa” (in their own words) system that alows users to take hand-written notesin
mesetings, and later group them together collectively with other users to creste a repository of

shared information.

Heiner a d. (1999) have created a hybrid system (the “Paper PDA”), which is a cross
between a conventional paper-based organiser, and a fully eectronic PDA. Thisis interesting
and rdevant to this thess, because the authors (ibid.) investigate combining the best

characterigtics of paper and the best of a PDA. They recognise “that paper is a very fluid,
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natural and easy to use medium...”, yet “has wel known limitations when compared to
electronic media...”. They use a naturd, informal, sketch and handwriting interface as input,

which later becomes trandated into eectronic form for further processng.

The subject of “active reading” (underling, highlighting and commenting in freehand while
reading atext) is explored by Schilit et d. (1998). Their systems uses a large PDA-type tablet
with an LCD digplay, on which a user can display a text and make annotations using a stylus.
This is another example of usng an informd, intuitive way of interacting with a computer
system, and providing input in a sketch like manner. Aswell as usng this naturd, familiar, input
mechanism, the underlying computer system further monitors the user's free-form ink
annotations, and uses them to discover the reader’ s interests. So, for instance, the system can

search for materid related to the annotated text, and display links to thisin the margin.

As Long et d. (2000) point out, pen-based user interfaces are becoming ever more popular.
One important and desirable feature of such interfacesis the use of gestures (commands issued
with apen) to control the program. The authors (ibid.) examine the design of gesture sets, with
the am of credting a tool to ad in desgning sets that are easer to learn. Gestures are
interesting in the terms of this thess in that they are an example of an informd, sketched

rendition being used for command and control of a program.

Findly, Igarashi et d. (1999) invedtigate a potentid application for an informa interface as
described in this thess — that of a sketching interface for 3D freeform design. In their paper,
they describe the design of a sketching interface for “quickly desgning freeform modds such
as duffed animals and other rotund objects’. The user draws 2D freeform (sketch) strokes

interactively, to specify the dlhouette of an object. The underlying sysem automaticaly
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constructs a 3D polygond surface modd based on the strokes. Their program “is designed for
the rapid congtruction of approximate models, not for the careful editing of precise models...”.
This gpproach is of interest to this thess, in that they (ibid.)) use an informd, sketch-based
interface to dlow the user to easly and quickly enter an idea for a desgn, and then use
underlying forma tools and methods (such as polygona mesh representation) to produce a

find modd.

2.8 Summary of this Chapter

This chapter has surveyed the literature in a variety of areas — computer science, cognitive
science, psychology, ergonomics, computer vison, and at & desgn. The concept of
informdity in computer systems, and especidly user interface design, is a rdatively new one.
There has neverthdess been a growing emergence of informdity in computer systems and
interfaces. The terms “informdity” and “informa” necessarily mean different things in different
contexts. This thesis is concerned primarily with the gpplication of informdity in user interface
design and computer systems through the use of tolerance of input, variability of output, and
the gist of the underlying representation. These concepts occur in the literature to varying

extents, and in various guises, as has been documented in this chapter.

This chapter has further catdogued the evolution of interface sysems from the early formd
ones such as Unix to the ones described in the latest research papers in sketch-based user
interfaces and gpplications. This chapter notes that the subject of computer vison addresses a
rather different problem to that faced by informd interfaces, as described in this thess.
However, it is dso noted that much can be gained from the traditiond literature of research in
areas such as computer vison and graphics, as far astools and methodologies for constructing
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an informa interface as described in this thesis goes. Other wdl-known constructions, such as
frames and objects, and attributes based on the style of Green's cognitive dimensions, and
constraint-based systems provide a suitable basis for object representations of an informa

interface described in this thesis.

In summary, this chapter’s survey of the literature finds a trend over time towards various
yles of informality in user interface and computer system design. Of particular interest to the
thesis is the use of sketchtlike input and output in user interface design, and the use of relevant
forma methodologiesin congtructing such an informd interface sysem. While various e ements
of an informd interface system as described in this thes's are touched upon in many aress of
the literature, this thesis ams to bring severd key disparate dements together (i.e. tolerance of

input, variability of output, and the gist of the representation) in anove way.
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3. A Framework and Architecturefor Informal | nterfaces

3.1 An Overview of this Chapter

This chepter sats out a forma framework for representational structures for an informal
interface, as described and implemented in this thess. Although informdlity is the overriding
principle throughout thisthes's, as Fisher (1991) points out, using forma methods and putting a
formaisad dructure in place is ill desirable. Ultimately an informd interface system (at leest,
at present) has to run on the forma architecture of a computer and operating system, and so

needs to be implemented as an informa layer on top of an underlying forma system.

The proposed architecture described later is meant to be both a workable solution as used in
the development of this thesis, as well as a framework for future expanson The principles at
their mogt primitive level are scalegble to higher levels of complexity, dthough thet is left to

future research.

3.2 A General Architecture

This thes's examines the requirements for an informa interface system thet, in generd, accepts
and processes input, trangports this in some manner, and then outputs this information again.
This could be a localy-based system on a computer, where the input-transmission-output
cycle is contained within a single window pane. It could aso be a locdly-based system
communicating between two window panes. Or, it could be communicating between separate

computers.



3.2.1 Putting the Framework into Context

As described in thistheds, an informd interface uses some means of sketch for accepting user
input, and mimics rough “humantlike" sketch for presenting output to the user. For ingtance, a
stylus might be used with a graphics tablet to input data to a desktop computer. The computer
might then decompose this input data into its interna representations. This data might then be
operated on or manipulated in some way, and then re-presented to the user in a Smilar

matching sketchlike style.

The purpose of the research in thisthesisis to examine such an informd interface usng sketch
to interact with a user, and to further examine the three dements of input, internd
representation and output. Thus a framework is required for these three digtinct eements. That
is, aframework is required for (i) deding with sketch input from a user and decomposing it
into understandable eements, (ii) handling the decomposed dements interndly (e.g. storing,

indexing or transforming them), and (iii) recomposing and presenting the output to the user.

The implementation described in this theds draws on the literature of computer vison, but
takes a novel gpproach in practice. This novel gpproach is taken so that suitable informa
cognitive representations are used. Low-levd and high-leve recognition systems are used, and
even higher order levels of systems are dso accommodated. The primitive of the low-leve
sysem is the Rough Straight Line, i.e. a hand-drawn line. Thisis interndly represented by its
primitive (the straight line) and associated atributes (e.g. the shakiness of the hand-drawn
line). The high-leve recognition system uses an Al gpproach (using Prolog) to recognise high-

level shapes (such asasguare or triangle).



3.2.2 Some Typesof Informal Interface Systems That Could be Built

This section contains examples of some of the types of informa interface systems that could be

constructed.

Later on in the theds (in Chapter 4) the main implementation is based around the concept of
an informal fax computer software program. This is a program which works rather like a
conventional paper-based fax sysgem, but which uses an implementation of an informd
interface. The computer software generates a boilerplate “fax” style form on the screen for the
user to fill in with text (viathe keyboard) or graphics data (using a Sylus). The program would
attempt to “recognise’ any graphics data input, and if it is able to resolve it to a known
informa object (e.g. a ketch of a house, or a sketch of a map giving directions), then it would
digtil this pat of the input information down to the gist of this particular object, for later
transmisson. (If any data were to be input that the program could not digtil down to an

informa gist representation, the data can be saved “asis’ and tranamitted in its origina form).

After the user hasinput dl the data, the informa fax program would then tranamit the collection
of informd gist objects and other “fax” data to a receiving verson of the program. This
“transmission” could be across a telephone connection as is usud, or perhagps over an Internet
connection. This remote verdgon (which need not be exactly the same implementation, in thet it

could be asmple stand-aone “viewer”) would then recondtitute the datain its own style.

Note that as well as the individua object contents being reproduced in the style of the remote

program, the overdl boilerplate of the “fax” program would be in its own individud style.



However, in order for the program to operate successfully, the viewer mugt faithfully re-create

the origind data (in a cognitive, informd interface, sense).

Supposing the user wanted to sketch and fax a diagram of a map of how someone should get
to a particular location. There are dready many conventiona ways of accomplishing this. A
person could draw the map on a piece of paper and then physicdly fax thisto someone s,
using a fax machine connected to a conventiona telephone line. Or someone could sketch the
map on a piece of paper, scan it in usng a scanner to create a digital bit-map file, and attach
this to an eectronic mail message to be st to the recipient. Alternatively, this person could
use a conventionad computer graphics drawing package to create a grgphicd image for

subsequent transmission by eectronic mail.

Using the informd interface “fax” program, the user could sketch in the map using astylus. The
software then decomposes the lines, curves, and other elements that make up a rough sketch
of agraphintoitsinternal representation objects. This package of representational objects can

then be transmitted to aremote user, and recongtituted by the viewing program.
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Figure 15:A rough sketch of amap



In this case, what is hot necessarily essentid is for the recongtituted map to be an exact replica
of the origind. What is essentid, however, is that dl the vitally necessary components and
asociations remain intact. For instance, the directions of the lines (eg. the roads) must be
roughly the same, as must their relaionships (e.g. north, south, east or west of each other).
Provided al such necessary dements (condiituting the “gis” of the map) remain intect, the
recondituted map will provide sufficient information for someone to navigate usng it

successfully.

Another type of informd interface gpplication might be one to produce informa sketchtlike
output graphs from data generated by a conventiona spreadsheet program such as Microsoft
Excd, or a presentation software package such as Microsoft PowerPoint. In this way, what
would otherwise be formd renditions of data could be presented more informely, as was

discussed previoudy in section 1.7.1, on page 20.

3.3 Informal Interfaces- A Scope of the Research

This section discusses the boundaries and scope of the research into the notion of applying
informdity to user interface desgn and human-computer interaction, and details which areas
are invedtigated. Although much of the research is theoreticd in nature (for instance deding
with representationd structures), account must sill be taken of suitable development platforms

and tools for the implementation of demongtration software.

The chapter analyses the potentia types of input devices that can be used, such as sound, pen
and keyboard, and their suitability for informa interaction. Smilarly, output devices are

conddered. The issue of suitable deveopment platforms, environments and software
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development toals is discussed, and findly in section 3.3.2 the actud systems of focus - the

specific type of informal interaction software programs to be developed - are considered.

3.3.1 Boundariesfor the Research

Since there has been little research work conducted into the notion of applying informdity to
the areas of interface design and HCI, there is much ope in what can be investigated.
However, in order to maintain a focus for the research, and to be able to ultimately publish a

thes's, there are some boundaries and constraints put upon the exact areas of research.

The focus of this research is a the user interaction leve; that is, the direct ways in which a user
might input data and needs (operations) to the computer, and the ways in which a computer
can output data (results) to the user. Such research istherefore naturdly constrained to existing
input and output mechanisms (mice, pens, CRT digplays and so forth). It might be nice to
imagine a different, future, world uncongrained by such “old-fashioned’” mechanica input and
output devices, but such a world does not exist yet and the thess addresses infformdlity in
existing computer sysems. The exciting issue of informdity in new computing is an arealeft to

future research, as discussed in Chapter 5.

Note that the secondary (athough equdly important) concept of an underlying informd
representation for such objects and interactions is device independent. As an abstract

concept, it is divorced from the mechanics of the actua operations of computing devices.



3.3.2 Systemsof Focus

This section andyses the types of areas that are of interet for the research, and that are

worthy of closer examingtion.

There are a number of classes of systems that could be of interest and used as a basis for the
sudy and devdopment of the research into informd interfaces. Examples include music
sysems (annotation, composdtion), the architecturd design of buildings, or interactive games
for children. In such cases, rough sketch-like input can be a naturd, familiar and credtive part

of thair functiondlity.

However, this research is based on the basic premise of (a) sketch input by a user, (b) internd
decomposdtion, recomposition and other machinations by the computer, and (¢) smulated
“sketch-like” output onto a video screen by the computer. As such, this sysem is
fundamentaly of a generd purpose nature, but specific examples (for example, the bridge

designer application outlined earlier) could be constructed when necessary.

3.3.3 Input Devices

Present day input devices tend to be limited to the ubiquitous mice and keyboards. There has
been some move to a greater acceptance of pen input devices, but with limited success until
recently - partly because of the poor performance of handwriting recognition software
systems. Devices such as the 3Com Pdm handheld computer are now proving popular. There
are other types of input devices too, such as the 3-D mouse and voice input. Indeed,
compared to the rich array of communications devices available to human beings in day to day

contact (such as sound, touch, visud cues) the choicesin the computer world are ill primitive.
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3.3.3.1 Development Platforms and Tools

There are, nevertheless, some pen input devices around. But a further problem arises over the
auitability of such platforms for the purposes of devel oping software. Products such as Apple' s
Newton MessagePad and 3Com’'s Pam computer are interesting and viable hand-hed

devices with stylus input, but can be difficult to use as software development platforms.

There ae ds0 ill a number of PC compatible (that is, computers usng Inted x86
microprocessors and running operating systems such as MS-DOS and Microsoft Windows)
computers available which are of a stylus input slate design, but since they are more targeted
a industrid and other verticd markets they are less accessble and more expensve than

conventiona desktop computers.

3.3.4 Output Devices

Choices of output devices for conventiond desktop computers are even more limited than
input devices. The only red choice for a grgphica output device isamonitor. In atypica I1BM
PC compatible architecture, the video display memory is addressed through the system bus,
with a correspondence between one or more bits of RAM and the colour and position of the
corresponding pixe on the screen. Lower leve operating systems drivers ultimately directly
address the contents of the disolay memory, setting the bits as gppropriate. An dternative
display mechaniam scheme is used in the X-Windows system, whereby the monitor is a
remote client of a server, with its own independent loca processing power. Display commands

are issued to the monitor from the server over the network protocols.
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Another type of graphica output mechanism is a device to draw or print directly onto paper.
Examples are asimple printer, a“crab crawler”, or aplotter (typicdly used for the rendition of

technica drawings).

Radter graphics digplays are driven soldy by apixd bit map. Thisis obvioudy aflexible system
(within the congraints of the available resolution and sze of the overdl image), but with a high
overhead of required processing power and bandwidth. An dternative display technology to
be used is a vector one, whereby a command set of vector parameters (eg. a set of
parameters such a “gart point”, “direction” and “length”) is presented to the vector graphics
subsystem of the display unit. Thisis especidly suited to the needs of, say, mechanica drawing
products, which are typicaly composed of known geometrical shapes (lines, circles and so

forth).

3.3.5 Summary of this section

In summary, this section has examined the choices available for (a) input devices, (b) output
devices, and (c) types of operation as a focus for the research, with the following conclusions

asto the precise nature of the devices and scope:

3.3.5.1 Choiceof input device

Input devices are assumed to be the conventiona keyboard, and a mouse @ a mouse-

equivaent stylus and digitiser tablet.
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3.3.5.2 Choice of output device

The output device is assumed to be a conventiona computer monitor, preferably a colour one
athough this is not a requirement. It is dso assumed that a graphics display is avaladle, and

not just atext (i.e. character) one.

3.3.5.3 Typesof Operations

The types of operationsthat are explored are asfollows:

a) sketch input by a user to a computer

b) sketch-like or conventiond crisp graphics output from the computer

c) some levd of interaction between the user and a computer, or between one user and

another user viaan intermediary computer and/or networking system.

3.4 An Outline Architecture

The architecture of informa interfaces described in this thess is based on two fundamenta
concepts: the primitive and the class model. From these are constructed informal interface

systems

Note that the architecture for an informa interface proposed here is particular to the thesis. It
is expected that, in generd, other informd interface systems would have their own particular
architecture. However, the architecture proposed is suitable for informa interface sysems

using sketch input and output, based on geometrica shapes such as straight lines.
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The primitive is the fundamentd building block for any informa structure, as addressed in this
thess. Primitives are not necessarily unique in a system, but each system must have a least one

primitive.

Class modds are condructed from the underlying primitives, depending on the number of
primitives available in a sysem. Every informd interface system requires at least one class

modd.

For instance, a primitive might be an RSL (a“Rough Straight Line’), and this might be the only
primitive in the sysem. From this a class modd can be congructed of dl the avalable
geometric shapes that the system is cgpable of congtructing from the primitive, shapes such as

asguare, triangle and so forth.

Of course, a class model such as the one above may not be capable of constructing every
member of the possble members of that class, as this may actudly be a superset of members.
For ingtance, a class model congtructed of the RSL may be limited in its informa cognitive
dimensions, and may only be able to construct members with ample angles (e.g. arectangle),

and not more complex shapes (e.g. atetrahedron).

Another example of a primitive might be a transstor. The class modd could be sets of such
primitives connected in various ways, athough these might not be very useful dectricd circuits
without further electronic components such as resstors and capacitors. Figure 16 illustrates a

sample dassmode built on asngle primitive.
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A simpleclass
built on asingle

primitive

A primitive

informal object

Figure 16: A simple classmodel based on asingle primitive

Higher levels of cdlass modds are possble when multiple primitives exigt in a sysem. In this
case, more complex objects can be congtructed by combining the primitives in various ways.
Such a class modd is an order of magnitude higher than a class modd relying on just asngle

primitive, asillugtrated in Figure 17.
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Complex ClassD

SimpleClassA Simple Class SimpleClassC
B
Primitive A Primitive B Primitive C

Figure17: A complex classmode based on multiple simple classes

3.4.1 An Architecturefor Primitives

The primitive, then, is the fundamenta building block. It is based on a sngular prototypical
object, which may be abdract or concrete, to which are atached associated extra

dimensions, as shown in Figure 18.

For ingance, the Rough Straight Line (“RSL”) is based upon the prototype object of a perfect

straight line, which is an abstract geometrica object. Associated with this are a number of

informal cognitive dimensions, sufficient to fully describethe RSL.
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Perfect Prototype Dimension A Dimension B g Di

Figure 18: Architecture of a Primitive

3.4.1.1 An Example of a Rough Straight Line Primitive

A Rough Straight Lineis compaosed of the following objects, as shown in Table 1.

76



Prototype Dimengons

Perfect sraight line Shakiness
Period
Direction
Thickness
Harmony
Accuracy
Length

Start-point

Tablel: TheRough Straight Line

3.4.1.1.1 Definitions of the Associated Informal Cognitive Dimensions

The informa cognitive dimensons associated with a Rough Straight Line are described here;
the st was derived empiricdly through experimentation with software developed for this

thes's, as described later in section 4.4.1.

3.4.1.1.1.1 Shakiness



Shakiness is a measure of the pixd variation at right angles from the prototypica straight line,

asshownin Fgure 19.

Example:
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Figure 19: Example of the Informal Dimension “ Shakiness”

3.4.1.1.1.2 Period

Period is the average number of pixels, as measured aong the length of the prototype straight
line, of an average periodic sSine wave superimposed on the pixd trace. This is illugrated in

Figure 20.

Example:
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Figure 20: Example of the Informal Dimension “ Period”
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3.4.1.1.1.3 Direction

Direction is the angle in degrees as measured clockwise from the verticd of the direction of

the prototype straight line, as shown in Figure 21.

Example:

Figure 21:Example of the Informal Dimension “ Dir ection”

3.4.1.1.1.4 Thickness

Thickness is the average pixd width of the line trace, as illustrated by Figure 22. In the
implementations described later, this would be the number of pixds drawn in a horizonta or

vertica direction by the drawing agorithm.
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Figure 22: Example of the Informal Dimension “ Thickness”

3.4.1.1.1.5 Harmony

Harmony is an abstract concept, based on an arbitrary scde of 1 to 10, of how
‘harmonioudy’ an dement fits into aregion. For ingance, a line drawn in the centre of a sheet
of paper is deemed to be harmonious with the region, whereas one pushed over to onesdeis

not harmonious.

Harmony can be deferred and updated. An inharmonious line can become a harmonious

square, as more lines are added to orient the find image in the centre of the region.

Fgure 23 illugtrates the concept of harmony. On the left, a rough sketch of a graph has been
drawn quite smal (compared to the overdl sze of the avalable area) on a whiteboard,
sueezed into the top left hand corner. If there is to be no more information added later, and
there is no use for the rest of the space on the whiteboard, this is an inharmonious use of the

avallable space. Theillugtration on the right shows amore harmonious use of the whiteboard.



Harmony may be used instead of start point, described later in section 3.4.1.1.1.8.

Example:

Figure 23: Example of the Informal Dimension “Harmony” - har monious ver susinharmonious sketches

of agraph on awhiteboard (context: no further information to be added)

3.4.1.1.1.6 Accuracy

Accuracy is a measure of how well objects are postioned in relaion to each other, for
ingance how wel joins are made between two lines. For ingance, one way of drawing a
square is to draw four separate straight lines, each joined at the end points. An andysis of the
average pixel discrepancy in the accuracy of starting anew line near to or exactly at the end of

another lineis ameasure of the accuracy. Thisisillustrated by Figure 24.
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Figure 24: Example of the Informal Dimension “ Accuracy” - line A ‘joined’ inaccurately toline B

3.4.1.1.1.7 Length

The length is the number of pixels that would be traced out by the prototype straight line, as

shownin Fgure 25.
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Figure 25: Example of the Informal Dimension “Length”
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3.4.1.1.1.8 Sart Point

The start point is the pixel location, as measured from an invariant location in the region, o
the start of the (virtud) trace of the prototype straight line, as illustrated by Figure 26. This

pixel co-ordinae isaprototypica one, asit may become physicaly dtered by accuracy.

Example:
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Figure 26: Example of the Informal Dimension “ Start point”

3.4.2 Functional Levels of Complexity - Class M odels

In order to differentiate between informd interfaces embodying differing levels of functiond
complexity, a system of Classes is used based on the core set of fundamentd informa object
primitives available (conceptudly or physicaly) to the recognition and inference engines. Note
that different functiona engines in a sngle implementation could be based a different class

leves.



Class Model levels are assgned according to the complexity of the fundamentd primitives. A
Class 1 modd utilises a sngle primitive object (eg. the straight line). Thisis the fundamentd
and only primitive that is understood; that is, a decompogition engine recognises only the
Rough Straight Line asavaid informa object. All other objects are maintained in their origind

form, e.g. asapixe vector trace.

An architecture operating at a class higher than 1 has the capability of resolving objects to a
higher levd of abdraction. For ingtance, in the implementation described here the recognition
engine runs as a Class 2 architecture: extra higher-leve abstractions of primitives such as
triangle and square are recognised. A Class 2 architecture is one which runs above Class 1
and which resolves higher-level abstractions that are composed of a single Class 1 object. A
Class 2 architecture needs to rely on only asingle Class 1 architecture as it builds dl its (more
complex) primitives, such as squares and triangles, from a angle Class 1 primitive - e.g. the
draight line. A Class 2 “primitive’ becomes a basic primitive in its own right, dthough it is

composed of primitives from lower classes.

A Class 3 architecture resolves Class 2 objects (and hence implicitly Class 1 objects too),
and which aso has the cgpability of resolving to an even higher level of abstraction. A Class 3
implementation might be able, for ingtance, to recognise complex shapes such as house, dog

or train.

Note that a Class 3 modd is actually composed d multiple Class 2 models, and hence
implicitly multiple Class 1 modds too. Thus a suitably complex recognition modd a Class 3
can dways be built from a sufficient number of Class 2 models; by inference, any unresolved

object can always be adequately resolved by the addition, at worst, of a new Class 1 model.

84



There is an important difference between these three classes of architecture, both conceptudlly
and in implementation. For ingtance, it is possble to build a software application (and such
goplications are described later) that seemingly operates at a Class 2 levd, in that it is
operaing seemingly eedly a a levd of squares and triangles. However, andyss of the
underlying engine would show that only a Class 1 architecture (e.g. just a straight line) isbeing
used. A Class 1 architecture can itsdf be quite powerful. However, the same results
(seemingly) can be accomplished by a Class 2 architecture, but again closer andyss would
show that a higher level of abstraction (e.g. squares and triangles) was genuindy being utilised
interndly. That is, a Class 2 architecture accomplishes the same end result, but a a higher leve

of abstraction.

As an example, congder a Class 1 implementation in which the Rough Straight Line is the
primitive. A square in such a system would be four such lines, i.e. four ingantiations of the
primitive. A Class 2 implementation using a Rough Square as its primitive would actudly
represent this square as a single indantiation of the primitive. The two present the same

representation at a high level, dthough they use different underlying levels of representation.

3.4.3 A Problem for Class 2 M odédls

There is one common problem that Class 2 models face: resolving conflicting abstractions. For
instance, is the drawing as depicted in Figure 27 meant to be two squares joined together, or a

rectangle with a bisecting line?



Figure 27: A Resolving Problem for Class2 M odels

This problem differs from that of Computer Vison, however, in that the input stream from the
user is temporaly dependent (i.e. it reflects the order in which lines are input). Thus the
recognition engine may have valuable clues as to what the user might have meant, dthough this
may be difficult to dways determine. For ingtance, in the example above the input engine
would have logged the order in which the lines were drawn as follows, asillustrated by Figure

28:
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Figure 28: Tryingto Resolve the Squares Problem



However, this does till not mean that the user meant the sketch to be that of a bisected
rectangle; it could still be two squares joined together, even though its *bisecting’ line might be
expected to be the result of different strokes (e.g. 1, followed by hdf of 2, followed by 5, and

back to the tart of 1).

This is of rdevance to this thed's because of the way that the higher-levd recognition engine
works, as described in this thess. The implementation described would first resolve the line
segments one by one, as the user drew them in, into Rough Straight Lines. This task is
performed by the low-level object recogniser. These line segment objects are then passed to
the high-leve recogniser. So the example in Figure 28 would be resolved as a rectangle 1-2-

3-4, bisected by line 5.

Alternatively, a high-level recogniser that is more sophisticated than the one described in this
thes's could be implemented, which would take into account the fact that such adrawing asin

Figure 28 could actudly be two squares, sharing acommon side.

3.5 Fundamental Primitives

Any Class 1 modd architecture engine recognises a sngle type of primitive object, and hence
a sngle prototype object. This object need not necessarily be smplistic however. In the
described implementation the fundamenta object is a Rough Sraight Line, whose prototype
is not the mogt primitive potentid object in that a point is more primitive. Indeed, the Class
Modd architecture accommodates this, as any pixe bit map object can be resolved by using a

Class 1 modd which hasthe point asits primitive.
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Thus one group of Class 1 modds could recognise a Sngle Euclidean geometric shape, such
as a line or circle A Class 1 modd could smilaly be based upon a more complex

geometrica shape, such as a parabola.

Note that different taxonomies or groups of Class 1 models exist, depending on the base
architecturd principle (Euclidean geometry, for instance). Class models could be constructed
usng, say, fundamental eectronic components, or architecturd (in the sense of the design or

layout of buildings and rooms) objects.

3.6 ThePrototype/Dimension Model

The congtruction of the fundamentd primitives described above can be succinctly termed a
Prototype/Dimension Modd (PDM), in that an object is composed of a sngle primitive

prototype, atached to which are one or moreinforma cognitive dimensions.

3.6.1 Operatorson PDMs

Although a PDM abject is actudly composed of a number of dements, it can be consdered
as a gngle unified object for some purposes, such as the gpplying of operators. For instance,
geometrica operations can be performed on a geometric PDM, such as rotation or
reflection. Congraints such as attachment can be applied to pairs of PDMs, and thenin turn
operators can be applied to sets of PDMs. In a condraint-based implementation, an operator
would be applied to a sngle PDM, and propagation ensures that its effect is goplied to dl

other associated (i.e. constrained) PDMs. So, for instance, if we wish to rotate a rough square

composed of four rough sraight lines, if those lines are condrained in the representationa



modd (through attachment at their end points by specific angles), then we need to apply only

arotation to one rough straight line for the whole object to be rotated.

Condraints are represented in the architecture by further informa cognitive dimensions. For
ingtance, one condraint linking two adjoining lines in the square would be ‘attached to’. A

further congraint linking the adjoining lines would be “at right anglesto’.

3.7 Representational Confor mity

One notion concerning the presentation of the output in this thess implementation of an
informd interface is that of Representational Conformity. Although dlowing the program
which is generating the output images much flexibility in the way it can choose to interpret these
informa objectsis a keystone of the architecture, there are bounds within which this variability

must be condtrained.

A gmilar issue is currently being faced by the HTML description language. Although origindly
the multitude of Web browsers were able to fredy interpret, lay out and display images, the
move in recent times (with the emergence of just two competing browsers on the market and
the inherent commercid demands) has been to tighter condraint in layout and positioning
possibilities. There has dso been understandable demand from Web page designers to have

more control on how their designs will gppear ultimately on the screen.

3.7.1 Representational Conformity and Informal Interfaces

The software developed for this thess was under the control and guidance of a single

developer, but this would not be the case were such software available commercidly, when



there might be many different software developers with their own interpretations of image

recondtitution.

In the above case study of an informad fax viewer, there would be a number of different levels

of interpretation to be consdered:

a) recondtitution of boiler plate forms (i.e. the layout of the ‘fax’ page)

b) re-layout of text items (e.g. fonts, Szes etc if not specified)

c) recondtitution of informa objects

In case (¢) the deveoper implementing the software would have wide scope in interpreting
images such as house, box, bridge and so forth, depending on the highest level of object
abgtraction being utilised. This can be used to good advantage in locde dependence (an
American house being made to look different to an English one, for ingtance), and is a naturd

by-product of gist interpretation.

3.7.2 Style Guidesfor Representational Conformity

We would expect that in some cases of paticular implementations guidelines would be
published (akin to the Style Guidelines for user interfaces published by companies such as
Apple Computer Corporation) to ensure tha there would be some level of conformity of
interpretation of Class models across platforms or different implementations. With the nature
of gist being dependent on context and culture, then these style guiddlines may aso need to be
context or culture dependent. For instance, renditions of rough sketches of houses may be

dependent on the country in which they are based, and English houses tend to look different



from American ones. So in order to retain the gist it may be necessary to be aware of the

context inwhich it is currently based, dthough this may not dways be the case.

3.8 Summary of this Chapter

This chapter has set out a generd architecture for a type of informd interface addressed by
thisthegs, i.e. one that alows for accepting sketch input from a user, performing an andysis on
that input data so as to decompose it into primitive dements, then performing a higher-leve
andysis of that data, and findly recomposing and re-presenting the data to the same or another
user. The implementation in this thed's uses the congruction of a low-leve recogniser and a
separate high-level one. The low-level recogniser works a the level of the Rough Straight
Line (“R."). The high-level recogniser analyses these RSL primitive objects, to try to

recognise higher-level congtructions such as squares and rectangles.

This chapter dso condders some types on informd interface systems that could be built using
this architecture, such as a sketch-based “informd fax” sysem, and an “informa graph”
generating system. A scope for the research in this thesis is then consdered, in as far as the
types of input and output devices that can be handled. Various types of input and out devices
are discussed, and their suitability or otherwise consdered as far as the requirements of the
thess go. Ultimatdy, the implementation described in this thes's uses a conventiond mouse,
keyboard, and digitigng tablet as input devices, and a colour graphics disolay monitor as an

output device.

This chapter then proposes an architecture for an informd interface as described and

implemented in this theds. This is based on the principles of the primitive and the class
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model. Although other primitives could be consdered, the only one handled in the
implementation in this thess is the Rough Straight Line. Class models are constructed from
the underlying primitives that they contain. A primitive is composed of its sngular prototypical
model, and its associated informal cognitive dimensions. The combination of primitives and
asociated  informd  cognitive  dimendons, and cdass modds is temed the

Prototype/Dimension Model (“ PDM” ) according to this thess.

Findly, the issue of Representational Conformity is discussed, thet is, “syle guideines’ for
informa interfaces & described in this thesis. This chapter proposes that in order for such a
type of informal interface to be useful, due regard needs to be given to how class models and

primitives are handled and rendered across different implementations of such systems.
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4. The Development of Software Tools and Applications

4.1 An Overview of this Chapter

This chapter describes some example software gpplications to investigate and demondrate

informal interface concepts.

A number of software components need to be constructed for an informd interface software
system. At the outset, the capabilities of the input and output mechanisms must be investigated,
as well as how to effectively represent and handle the informa images. So, as far as the input
mechanism is concerned, it must be able to accept the graphica input of adrawing device such
as amouse or a pen in some way, render this on the display device, and store the input in a

useful internd representation.

In the case of input, suitable software is constructed to accept the point co-ordinates as data

from a device such as amouse.

Asfar as the output mechanism is concerned, two eements must be considered: (1) the actud
rendering of the informa image, and (2) a mechaniam to cregte this image from the interna
representation. So, it must be able to render a suitable output image (as a pixel bit map on a
conventiona computer grgphics display) from an internd informa representation. Since the
output image needs to look informd, in the sense that straight lines look like rend-drawn
rough draght lines, suitable dgorithms for creating effective looking output images must be

devised.



Having established these essentid building blocks, more aborate informa interface systems

can now be congtructed. In this case, the components are split into a number of different aress.

1) input of the (graphicd) image

2) alow level decompostion engine to resolve the input image into primitive informa objects

(eg. rough graight lines plusinformd cognitive dimensions)

3) a higher-levd andyds engine to attempt to resolve low levd primitive objects into higher
level condructs (eg. a number of rough draight lines may make up a higher leve primitive

congtruct such asasquare)

4) a method for transporting high or low levd informal objects from one device or user to
another device or user, across any arbitrary transport mechanism (e.g. file copy, TCP/IP, or

modem link)

5) an independent method for recongructing a rendition of an informa output image from the

low level trangported primitives

and findlly

6) an independent method for recongructing a rendition of an informa output image from the

high level trangported primitives.

Note that (5) and (6) are entirdly different cases. In the case of (5), smple low levd primitives
(i.e. rough gtraight lines) are merely reproduced; providing there is no error in decomposition

or transportation, the output image will be Cl-equivalent. In the case of (6), a high levd



informal object (e.g. a “square’) is rendered according to the “understanding” by the output

engine of what a square should be.

These software programs have been developed in a variety of languages (such as ‘C’, C++,
and Prolog) depending on the design requirements, under a number of development systems -

principdly Borland C++ Verson 4.5 (Borland, 1992) and Cogent Prolog (Amzi, 1995).

4.2 Choicesfor Representational Structures

In congructing an architecture for informa interface representationa structures there were a

number of different ways of accomplishing the task, which are examined in more detal here.

421 Frames

Usng frames (Minsky, 1975) as a representational framework is appeding; an informa
object lends itsdf well to being represented by a frame and fillers - the skeletd frame being the
fundamenta primitive such as a draight line, and the fillers being the associated informd

cognitive dimensions such as shakiness, thickness, colour and so forth.

However, development tools and environments are not so prevaent for creating software
using frames, one notable exception being Apple Computer’s development environment for

the Newton M essagePad.

4.2.2 Objects

The representations are, naturally, object-based, dthough the term object can be interpreted

in anumber of ways. In adrictly programming sense, such asin C++, an object has a precise
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defined meaning. As such informa objects could certainly be couched in terms of a C++
object; dthough if the representations of the informa objects themsalves are not couched in
object-oriented terms then the extraneous development can certainly be so. That is, in the
PDM architecture, an informal interface object (such as arough straight line) is an “object” in
the sense that it is an encagpsulation of data So these “objects’ could be physcdly

programmed as C++ “objects’, or in a proprietary data encgpsulation manner in another

programming language.

4.2.3 Prototype/Dimension Models (PDMs)

In fact, a paticular implementation of PDMs was used, being a hybrid frame/object

congtruction, but based on a (deliberately) verbose ASCII character architecture.

4.2.3.1 PDMs versus Objects

In arefined implementation of software for thisinforma interface system, it might be preferable
to use a more compact object-oriented structure for the interna representations than the ones
used in this thess. However, in the implementation described, a verbose representation is
utilised. In an earlier implementation this took its style from HyperText Markup Language
(HTML) used widely in the Internet, based on the use of ASCIl text based files. An
advantage is that ASCII text files are eeser to browse, study and understand, without the
development of separate browser programs. And, aswith HTML, they are extremely portable

across networks and different platforms.



For convenience, in the current implementation Prolog predicates are used to define the PDM
elements. This choice was made so that the output from one component could be fed directly

into the Prolog-based component, without further trandation.

4.3 A Set of Informal Interface Toolsand Applications

One toadl is a Microsoft Windows based utility called the Informa Interface Object Browser
(120B), developed to investigate the generation of primitive informd objects (i.e. primarily the
fundamental rough draight line or “‘RSL”) and associated informd cognitive dimensons. This
program provides ingght into a possible set of dimensions on which to base informal objects.

The program is detailed | ater.

A more sophigticated gpplication takes the form of an informal fax or email type program
(called “i-Fax”), in which the user interacts with the program to input data to be “faxed” in a
number of diginct ways. (&) conventiond keyboard typed input, (b) conventiond graphics
input (e.g. handwriting script), and (¢) other (“understandabl€e’) graphics input interpreted and

stored as informal objects

There are a number of other support programs to illustrate the use of informa objects. (1) a
trangport layer handler, (2) an independent dternative object viewer, (3) an andyser engine
and (4) apost-analyss recongtructor. A structure for this architectureis shown in Figure 29. In
the implementation described in this theds, the Fax program is represented by the “informal
fax gpplication +Hax” and “Decompostion Engine’ boxes. The Xport program is represented
by the “Transport Layer” box. The DOSView program is represented by the “ Simple Object

Viewer” box. The Prolog progran EXAMINER is represented by the “Andyss and
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Recomposition Enging’ box. The program +View is represented by the “More Complex
Object Viewer” box. These components are detailed later, but by way of an outline illustration
a sesson would typicdly condst of a user firg condructing a “fax” using the Fax program,
which would be a mixture of text characters, and graphics images. When graphicsimages are
input the program attempts to interpret the graphics vector trace into a primitive informd
object (i.e. a“draght line”). If a successful decompostion is achieved, the andysed object is
dored in a temporary output file, as are text characters and miscellaneous (uninterpretable)

graphicstraces.

Informal Fax
Application
i-Fax More Complex
Object Viewer
Simple
Object
Viewer
Decomposition Analysisand
Engine Recamposition
Engine

/'

Transport Layer

Figure 29: Block diagram of an informal faxing system

When the user has finished composing the “fax”, the send function causes the program to
concatenate object descriptors into a single output file, which is, for instance, spooled to a

\OUT subdirectory.

A second utility, the transporter, can then be used to convey the message file. In this

illugtrative case the transport merely copies the file from one subdirectory location to another;
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in principle the file could be embedded with an emall, compressed to a binary stream, sent

over amodem link, converted to HTML extensions before transmission, or whatever.

An example of an independent informa object viewer, DOSView (it is so-cdled
“independent” dnceit is an entirely different development from i-View of the interpretation and
recongtruction of informa objects, and indeed was developed using a different programming
language and development environment to +View) can a this point be used to view the

resultant “fax” output.

EXAMINER is another more sophisticated informa object interpreting program, applying Al
programming techniques to andyse the set of informal objects. This program was developed in
Prolog. Examiner can, for instance, recognise and extract an (embedded) interpretation of
smple graphica objects such as a square. This interpretation is re-spooled out as a post-

interpretation representation file, usng an HTML-style or Prolog syntax.

Findly, aviewer i-View can be used, perhaps by a distant and different user who has recelved
this informa fax, to view an interpretation of the object sets. In this example case, the user
might have entered some text and a drawing of, say, the rough design of a house. +View
atempts to recondruct the smdl informa object primitives that it finds in the input file, into
(hopefully) the same looking house that was origindly input - a least maintaining the gist of the
representation to dl intents and purposes. Its metric of success (a concept which is examined
in more detall later) is the degree to which the origind gist of meaning is retained from the

origind to the recondtituted interpretation.



4.4 A Detailed Description of the Software Tool Set

The software tools described in outline above are now examined in more detail.

4.4.1 Thelnformal Interface Object Browser, [20B

120B, an informd object condructor, is an initid investigative tool developed for informad

interfaces. It is built as a Microsoft Windows 3.x gpplication and written in C. This program is
able to build some informd interface objects out of the single primitive of a rough straight
line; from this foundation more complex objects can be built, such as rough graph axes with
functiond reationships (i.e. a sraight line or other more complex curve graph depicted a
reaionship such as x=2y or y=x?), squares, triangles and grids. The basc prototype isthe
perfect sraght line, and its form is varied by changing the informal dimensions of this object
or frame. The informd dimensons handled are shakiness, period, direction, thickness,

harmony and accuracy.

The purpose behind this program is to be adle to experiment with different informd
dimensions, to discover which ones were necessary, interesting, and possibly interrelated, and
to develop dgorithms for their congtruction. For instance, the program was initidly constructed
with only the ability to draw a perfect Sraight line in a fixed direction. This was then extended
by further programming with the concept of shakiness. Shakinessisindicated by anumber on
ascde of 1 to 10 that was factored in to a random number generator to create variability in
the displacement of the next pixe to be drawn from the prototypicd straight line. This was not
found to produce convincing, “human sketchtlike’ results, so the dimension of period was

introduced (a carrier Sine wave), again factored in on a numeric scae. This created more
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convincing results, in that the resultant lines looked more like ones drawn by humans using a

mouse or stylus asinput.

Smilaly, other dimendons were introduced and discarded or incorporated after
experimentation. Thickness is the average line width in pixes. Direction is the angular
displacement from the verticd of the prototype. Harmony is a measure of how ‘harmonioudy’
the object fits in with its environment, i.e. how well, say, a triangle is placed in the screen to
balance available space and size. Accuracy is a measure of how well the gtart of one line, for
instance, is joined up with the end of a previous one. Figure 30 shows an example of arough
sketch-like square drawn by 120B. The dimensions for the last object drawn are shown at the

top of the screen.

B Informal Interface Object Browser M= E
Draw  Dimenzions ﬂe’h:_l
52 P: 20 D: 90 T: 2 H: 10 A B

Figure 30: An example of a square asdrawn by the I nformal I nterface Object Browser

Figure 31 illustrates how shapes can be chosen for drawing by 120B.
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= Informal Interface Object Browser

Dimenzions: Help

Ling F2
Heorizontal ame F2
Meticalanis  F4
Graph ases F5
Square

Triangle

Vetical lines
Harizantal linss
Girid

Reset defaults

Exit

Figure 31: Choosing a shapeto draw

Figure 32 shows how the informal cognitive dimensons can be changed.

= Informal Interface Object Browser = EE
Craw WEIGE :

Dirsction
Thickhess:
Harmary
Arouracy

Figure 32: Changing theinformal cognitive dimensions
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Figure 33 illudtrates a square drawn with dightly different dimensons the leve of shekinessis

now 3.

B Informal Interface Object Browser =l E3
Draw - Dimensions: Help
5.3 P: 20 D: 30 T: 2 H: 10 A B

Figure 33: The effect of increasing shakiness

Figure 34 shows the effect of increasing the thickness of the line.

Bl Imdoimol Iekeilloce Dhbje ol Diowesi
L Opreeainne  Hel
o | PEl DoOoE MG Hoie &

Figure 34: Increasing thethickness of theline
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Figure 35 shows another example of a square. The informa cognitive dimensions are the same
asin Fgure 30, but the pixd bit-map trace of the lines of the box is dightly different. In a

particular context these two sketches of abox are Cl-equivaent.

B Ietoma Ietnitaca ibjeet oo
Cma  Breiiming Hal
b [t < LI T | 4 H 1R &S

Figure 35: Another example of a squar e drawn using the sameinformal dimensions

With this Smple congtructor, we can build straight lines or more complex objects and compare
them with how a human might be able to draw them given a suitable stylus and touch screen.
For ingance, a combination of informa dimensions can be found to give convincing images,
but changing just one of the dimengons alittle may make it immediately obvious thet it was not
drawn by a human (a“graight” line might start to look too shaky, for ingance). However, we
have found that when drawing a more complex object such as a grid composed of horizonta
and verticd lines no amount of modifying the current set of informa dimensions can creete a
convincing picture; we need to add more dimensions (such as d direction or change in the
basic direction, o variability from amore complex primitive such as a perfect grid as opposed
to variability from its own atomic primitives, the sraight lines). Although the gig of the

representation is retained (i.e. a “rough grid"), generally when users were asked if the image
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had been created by a computer or a human they guessed that it was computer-generated.
When asked why, it was because dthough each individud line was convincing and like a
human-drawn sketchy one, the overal effect was too ordered and precise. There was not
quite enough varighility in the output - i.e. not enough variability in the spacing of the prototype

grid lines

4.4.2 Thelnformal Fax, i-Fax

i-Fax mimics a software fax style program in which the user is presented with a pro forma fax

page layout. Ultimately, a user would be able to input datain three ways.

1) text (character) input, using a keyboard

2) handwriting curdve script, to be andysed by a handwriting recognition engine

3) sketchinput, to be andysed by an informd interface engine.

Any input not recognised by the above three methods would be saved as a pixel bit-map or

vector trace.

At present, the implementation of i-Fax handles only case (3), which isthe focus of the thesis.

The implementation of the program attempts to recognise one type of primitive: the rough
draight line. If it recognises input as being arough straight line, it resolves the line into its PDM
of the prototype draight line and associated informd cognitive dimensions. This is does by
means of a smple best-line-fit dgorithm, as detaled in the Appendix A software listings, with
the addition of pogt-processng to extract the supplementary informa cognitive dimension
objects or fillers. A successful decomposition and resolution process would thus result in a
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vector trace input being resolved into an informa object text analyss output file, spooled
individudly into an output subdirectory for later concatenation and reprocessing. The following

is an example of an output descriptor for a particular rough straight line;

% nf or mal - obj ect-structure-version: 1.01
obj ectt ype( hAMAEAGFO, |i ne).

shaki ness( hAMAEAGFQ, 6) .

peri od( hAAMAEAGFO, 2) .

di recti on( hAMAEAGFQ, 90) .

t hi ckness( hAMAEAGFO, 1) .

har mony ( hAMAEAGFQ, 0) .

accur acy( hAMAEAGFO, 5) .

| engt h( hAMAEAGFO, 203) .

st art poi nt (hAMAEAGFO, 267, 372).

Notice that the syntax is.

<informal cognitive dimension>(<unique handle><value>(<value>))

The Fax implementation is aso currently used as a vehicle for some extra experimentation
and debug purposes. For instance, it can generate its own rough sketch-like lines, and more
complex images such as a square and a house. An example of a sketch-like house generated

by i-Fax isilludrated in Figure 36.
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Figure 36: A rough sketch-like house as generated by i-Fax

Notice how changing the informa cognitive dimensons will dter the image. In Fgure 37,

shakiness has been increased to such an extent that the drawing is no longer convincing.

FRE Ll

Es M DHuy Hete

Figure 37: Theeffect of increasing shakinessin i-Fax

Alsp, i-Fax can be used to dump information concerning objects that have been entered.

Figure 38 and Figure 39 show dumps of the data for particular hand-drawn lines.
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B The Informal Fax: i-FAX =B
Ead Edit Debug Help
'HORIZONTAL LINE: Shakiness=7; Period=1; Dir'n=90; Thickness=1; Length=235%; Start=(127, 198)

Figure 38: A Debug Data Dump from i-Fax

= The Inlumal Fax: i-FAX l=] B3 i
Ee Edd Debug Hebp
VERTICAL LINE: Shakiness=30 Period=2: Dir'n=100 Thicknesa=1! Length=167! Stark=[299, 120]

Figure 39: More Debug Data from i-Fax: avertical line
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4.4.2.1 Data Format Constructions and Considerations

The parameters are actudly in Prolog predicate format, athough severd different styles are
auitable. An ealier verson of the program utilissd an HTML-gyle extendon syntax. A
verbose, HTML-type text-based syntax is convenient for legibility and ease of understanding,
as wdll as portability across different platforms. An dternative would be a concise binary bit-
oriented or tokenised syntax, if data Szes or transfer rates are important. Such a
representation is preferable for data compactness consderations, athough not necessaily

legibility, asit is not text-based.

In the implementation described in the thess, Prolog was chosen as a convenient output
syntax. This is because the objects are later collated for subsequent andysis by a Prolog
engine. So the data output from one layer of the architecture can be fed directly into another
layer of the implementation in this case, thus saving an intermediary, dthough somewhat trivid,

trandation phase.

In each case the predicate name (which must start with aletter in lower case) isfollowed by its
firgt parameter, which is a unique handle identifying each object. In this case the handle is the
lower case letter ‘' followed by an eight character unique and random string created by a

gandard ‘C’ library function.

Other parameters may follow depending on the object type, as detailed in the appendices.
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4.4.2.2 Further object composition

Further successfully recognised and decomposed lines will be smilarly spooled out to the
output subdirectory. Images that are not successfully recognised are saved as vector traces,

for instance, for later recomposition.

Upon completion of the composition of the fax, the user would sdect the Fax/Send menu

choice. This causes the following to occur:

1) awrapper header is generated and spooled to the master output file

2) the primitive object files are concatenated one by one onto the end of thisfile

See Appendix B for an example master output file.

4.4.2.3 Spooling Subdirectory Usage

In the current implementation the magter output file is named ifax.pro (with a ddiberate default
.PRO Prolog extension) in a subdirectory named \OUT; primitive object files will have been
spooled to the \OUT\OBJECTS subdirectory. Other implementations could have a direct
interface between program modules, with data buffers being passed directly, instead of an
intermediate file definition. However, it was fdt to be more indructive throughout the
development of dl the elements of the software suite to retain the components as separate,

highly-defined modules.
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4.4.3 TheTransporter, XPORT

A template transporter application, XPORT.EXE, demondrates the application of an
independent trangport mechanism to convey the resultant master output file ifax.pro from one

location to another. In practice, this transporter could take a number of forms, eg.:

a) an encapulator to wrap the file in SMTP, s0 as to be conveyed over an Internet email

connection

b) an IPX, TCP/IP or other transport protocol driver

¢) amodem did-up driver

d) a native transport layer

Note that a post-processng compiler such as a tokeniser, compresson and/or encryption

engine could aso be used to effect more efficient and faster transportation.

In this implementation the trangport layer engine demongrates environment independence by
samply copying the file from one subdirectory location to another, i.e. from the subdirectory

C:\OUT to the subdirectory C:\IN.

4.4.4 |nterpreting and Viewing the External Representation

The transportable externd representation, comprising a complete description of the input data
in terms of (i) text dements (ii) informa object descriptions and (iii) any other data, can be

further processed in severd ways. At aClass 1 level, the component informa objects (such as
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a st of rough sraight lines) can be recomposed by a viewer program into what should be a

Cl-equivdent representation of the origina object, such as a sketch of ahouse,

At a Class 2 leve, the sat of informa objects can be further processed to glean instances of
higher-order informa objects. For ingtance, a set of four rough draight lines, if correctly
constrained with the correct attributes (lengths and angles of attachment, for instance), might
be deemed by a recognition engine to condtitute a square. A more complex set of objects
might smilarly be deemed to conditute a house. This new higher-leve representation could
then be passed to another layer (e.g. a trangportation function) as a single informa object —
House for ingance. Part of this object definition would aso be a measure of the leve of

informality.

A high-level viewer would then be able to take as input the high-level representation, and
would recondtitute it in its own interpretation. If dl goes well, and the gist retention is sufficient,
the resultant graphicd output should be a cognitively informaly identical image — e.g. a house

recognisable to the origind creator as essentidly the same one asin the origind intention.

445 DOSView - the Smple DOS Graphical Viewer

DOSView isagmple informd interface object viewer, which creates a recompostion using
independently developed agorithms; the program is a DOS program, as opposed to a
Windows one, with no common agorithm code base shared with FFax or other modules.
(Indeed, the program was deliberately developed in ‘C’ as opposed to C++, and for the DOS
operating system and not for Windows, to emphasise this independence from the origind

codebase of C++).
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DOSView creates a template fax output screen, displaying its built-in layout (which may of
course be different than the layout of the sending program), and thenfillsin textud information
parsed from the input file as necessary. The vector trace graphics images are subsequently
digplayed, as are the program’s own interpretations of informa objects. This is illustrated in
Figure 40, which is DOSView's interpretation of the externd representations of the actua

sketch of a house as generated by i-Fax, illustrated previoudy in Figure 36.

“a Comeane] Promgi - dos e sxe -« FROZEN

3

D=View Informal Fax Viewer Yersiom 1.2

Froane Lin Cullinosere

Figure40: DOSView

4.4.6 TheProlog Object Recogniser Engine, EXAMINER

The informa object decompodtion engine of the i-Fax program is a Class 1 modd
architecture, having embedded underganding of only a single primitive informa object and
associaed informd cognitive dimensions, namely the rough straight line (RSL). An integrated

decomposition engine could be constructed with a higher level of understanding (Class 2 or
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Class 3); ingtead, in this implementation a secondary and distinct Class 2 recognition engine is
Examiner. Thisis a Prolog intelligence engine developed using Cogent Prolog from Amzi! Inc.
(Amazi, 1995). Fgure 41 shows the source code for Examiner, examiner.pro, loaded into the

Integrated Development Environment.

¥# Amzil Listener - Amzi! Development Environment

CFle Edi Wiew Listener Bulld indow Help

Dle|g] ] Slen] s Rl
| = Amzil Listener

Amzit! Prolog Listener
Version: 3.3 Jun%6 32-bit 386 Protected HMode Windows DLL
Jun 6 1996 18:47:87

Consulting EHU.PRO

lyes
?- consult('C:\\PHDA\\EXAHINER\\EXAHINER .PRO" )
yes
L -

a1

For Help, press F1 I [NOM 7

Figure41: Examiner, written in Prolog

Examiner takes asitsinput the ASCII text file named ifax.pro which was previoudy the output
of the i-Fax program. This file congsts of, amongst other deta, Prolog predicates (as detailed

earlier) which describe the characterigtics of informal objects.

Examiner seeks, in Prolog style, to recognise higher levels of object abstraction according to
its in-built rules. For ingtance, it will seek to recognise level two primitive objects such as a
square. A sguare is defined, in Prolog rule fashion, as four straight lines of equa length joined

successively one to the other at right angles. Smilarly, rectangles, triangles and other
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geometrica shapes can be recognised. Much use is made of a joined_to rule, detalled in the

source code ligingsin Appendix A.

Thisis the current levd of development of Examiner. But by making use of informa cognitive
notions such as within, on_top_of, to_the left of and so forth more complex leve three
objects such as a house could be recognised, for a house is composed primarily of a number

of rectangles:

1. aman rectangle

2. with four smdler squares within it

3. oneto the top left

4. one to the bottom left

5. oneto the top right

6. one to the bottom right

7. asmdl verticd rectangle in the bottom centre within the main rectangle

8. two inward doping lines from the top left and top right of the main rectangle...

and so forth.

447 Thelnteligent Viewer, i-View

DOSView understands only the badic primitive of the rough draight line (RSL) and its

asociated dimensons. That is, it deds only a the Class 1 levd. However, with the
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development of a more complex decompostion and recognition engine, and hence a more
complex set of informa objects, it is desrable to dso be able to use a more phidicated

viewer, i.e. one that operates a aleve higher than Class 1.

i-View takes high-level informd objects and re-interprets and displays them according to its
own built-in rules for understanding. For instance, i-View takes the input of the informal object
House and condructs an image in its own understanding of a cognitively informally identica

house, as shown in Figure 42.

[ The Informal Object YViewer: i-View
Miew  Help

Figured42: i-View' sinterpretation of aHouse, asoriginally output from i-Fax

The software program View has a primitive viewpoint of houses. Its rendition of ahouseisa
very smple one — two dimengond view from the front, four windows, no door, Sde dopesto
a flat roof, and a chimney on the right. This is exactly the same as the gist of a house as

understood by i-Fax. A more sophigticated scenario would entail the high-level informal object
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for the house having a number of atached informa cognitive dimensions, such as <with door>,

<two chimneys>, <one window downstairs> and so forth.

i-View's informa cognitive dimengons are currently built-in and hard-coded, but they can be

changed through a recompilation of the source code.

Figure 43 shows how View interprets its rendition of this house with no informality applied.
Note how it is a boundary condition — a*“perfect” rendition of its understanding of a “house’.
That is, dl the lines are perfectly sraght, with windows placed symmetricaly and so forth. Of
course, this would be a good dart for an architect’s or builder’s plans for a well-engineered
house, but may not be suitable as a “rough sketch” of an idea for a house design to simulate

further thought and design.

= The Informal Object Yiewer: i-View

Miew  Help

Figure43: i-View'srendition of a House without infor mality applied
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4.5 An Example Scenario

As an example, consder the case of a user who needs to send directions in some way to
someone else as to how to get to the user’s office or home. As discussed earlier in the thedis,

the user has a number of options, for ingtance:

1) photocopy amap and send that through the post

2) photocopy amap and fax it

3) scaninthe map and attach that to an emalil to send to the other person

4) draw in amap on paper, and fax or scan and then email that

5) useadrawing package on acomputer to create aline drawing map, and then print that out

for subsequent faxing, or emal the graphicad image

and so forth.

Sending amap by email or fax has the obvious advantage of peed, as the conventional postal

system takes at least aday to deliver.

As part of the research for this thess, several examples were collected of the way in which
different people chose to accomplish the above. This was done over the course of three years,
while working in the computer industry and observing the way that this task was undertaken in
redl-life stuations. The examples monitored were generaly the result of a request to another
company to supply a map of how to find its offices, for an upcoming meeting for ingance. In

the mgority of examples (14 out of 19) users chose to draw a sketch of a map by hand for
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subsequent faxing. In dl of these cases, the sender and recipient would have had access to
computer and eectronic mail. In aminority of cases the users chose to attempt to draw atext
representation in the body of an emaill message, or attach a previoudy designed document to

anemal.

In the scenario of usng an informa interface system as described in this thesis to accomplish
this task, the user would use the program i Fax to sketch in the map. A combination of i-Fax

and EXAMINER would then decompose the sketched map into the elements of:

1) rough straight line objects, and other primitives understood by i-Fax

2) higher-levd primitives understood by EXAMINER (e.g. squares, circles, blobs, and other

geometrica shapes, congtraints such as attachment, etc.)

3) other dements not handled by i-Fax and EXAMINER, such as handwriting text and

complex grgphicd images

Note that the current implementations of the software can handle the more primitive of these
objects, but not dl of them. In principle the software can be further extended to handle dl of

these cases.

The set of software would finaly creste an output file containing representations of dl these
types of objects. This file would then be sent by eectronic mall to the recipient. The recipient

would then run the i-View software to view the image.

Due to the variahility of output of an informd interface system as described in this thess, the

recongtructed bitmap image of the map might not be exactly the same as the one the user had
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origindly created. However, if the sysem had worked successfully, the resultant image would
be Cl-equivdent to the origina, and so the gis would have been retained and so the map
would il portray the correct information. It is unlikely that the user would be able to create
exactly the same image on subsequent attempts, adthough it should ill be a Cl-equivdent
image and should contain the same gist. The recipient should be able to navigate successfully

using the received map.

45.1 A Metricfor Success

A metric for success for such an informd interface sysem would be if the mgp was
reproduced successfully, i.e. containing the same gist, and Cl-equivdent or cognitively

equivaent.

This metric could be measured in anumber of ways.

1) The recipient was able to navigate successfully using the map

2) An andydswas made of the map, comparing it to the origind. All key dements would be
examined for contextua correctness. For ingtance, the maps should be topographicaly

equivaent.

3) The map could be compared to aformd verson, eg. an Ordnance Survey map, to verify

that al key elements were correct

4) The resultant map could be shown to the original sender. If this person declared that the

map was, in ther opinion ether exactly the same (i.e. Cl-equivdent), or similar but still



conveying the same information (i.e. cognitively equivaent), then the gis would have

been retained and the system would be deemed successtul.
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4.6 An Evaluation of the Informal Interface

This section provides an overdl evaudion of the thess implementation of the informd
interface, and details user sudies that have taken place. The section dso consders Sde-effects
from using informdity in user interface design. For ingance, there can be a positive effect from
data compresson, since only the compact representation of gist needs to be physcdly
trangmitted. Didilling representations down to ther gis may dlow for efficient indexing
sysems. Also, informd interface representations are sometime dependent on locde. This may

have a pogtive or negative effect on the system.

4.6.1 Goalsof the Evaluation Study

There were a number of gods for the evauation study. Firg, it was an experiment to see how
well people were able to use the user interfaces of the software toals. It was dso a study of
how well the test subjects were able to draw lines and shapes usng the available input tools (a
mouse and a graphics tablet). These hand-drawn shapes (e.g. squares) were then presented as
input to the High Leved Recogniser software component, so its performance was aso
evduaed. The qudity of the subsequent output (renditions of the gist of the shapes
recognised) was then evaduated. Findly, the test subjects’ reactions to the subsequent outputs,

and the overd| performance of the set of software tools, was evauated.

From a design point of view, the evaluation study had benefits in that it was vauable feedback
as to how well (or otherwise) the software components performed, and how users were able

to interface with these components. It was aso beneficid to gain the users reactions as to



what types of useful sysems might be able to be congtructed out of such components, and

therefore where future research directions might lie.

4.6.2 TheUser Studies

Section 1.5 detaled two specific ways in which a metric of the effectiveness of an informd
interface or sysem can be measured. This chapter evduates the dements of the

implementation of the informd interface software system described in this chapter.

There are two proposed metrics for conducting an evauation: 1) user gppreciation studies with
a sample of end users, and 2) a feedback loop system, in which an output from an informa
interface system is fed back into itsdf. The first metric was used in this study. The software
programs developed to demonsgtrate the essentid elements of this thes's have proven to be of
use, but are il a a rdatively early sage of development. Later versons will become more
sophisticated. Neverthdess, it was fdt to be useful to conduct at least some preiminary user

studies using the software developed to date.

This chapter summarises a smal user sudy that was carried out as an initid evauation of the
implementation programs. Five users were selected, and some time was spent individudly with
them on a one-to-one basis. Each individua user was seated aone with the writer of thisthess
in aroom, in front of a computer that was running the implementation programs. Each user
study occupied a period of time of about thirty minutes. The user’s actions and comments

were noted, and appropriate feedback and guidance given whenever necessary.
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4.6.3 An Example Scenario, and the Results of User Studies

Supposng we want to “fax” a smple drawing to someone else, perhaps the sketch of our
house, or amap of how to get to a certain place. As asmple example perhgps we “fax” just a
rough-drawn object, such as a square. A smple square will serve as an example, as it
illustrates how more complex objects (e.g. ahouse, which is made up of sraight lines, squares,

rectangles, doping lines, etc.) could aso be treated.

The five users were asked to draw by hand a rough sketch-like square into i-Fax. The users
ranged in age from 5 to 54 years old, and were a mixture of mae and femae. Only one was
paticulaly computer-literate. No particular explanation was made to the users of the

underlying way that the set of software programs worked.

The users werefirgt dlowed to experiment with usng either amouse or agraphics tablet asthe
input device. Lines are drawn in tFax by first postioning the mouse cursor in the desred
place, then dragging the mouse (or moving the stylus) with the left button held down. After
some experimentation (gpproximatdy five minutes) the users were adl able to draw reasonable
draight horizonta and vertica lines, which would be successfully recognised by FFax asin
Figure 38 and Figure 39. In one case, the vaue of one of the default informd cognitive
dimengions (the “shakiness’) was changed to increase the success rate of line recognition.
(This user presumably had a more shaky hand for writing than those of the other subjects) As
would be expected, most of the users found some difficulty a first in drawing draight lines
successtully, especidly using the mouse. The graphics tablet was found to be better for
drawing graight lines on their own, as it was more like usng a conventional pen. However,

users generdly had more difficulty in drawing lines that joined up successfully to creete the
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corner of the square when using the tablet, than when using the mouse. They generdly found it
eader to make the join usng the mouse, as the mouse cursor could first be postioned in the
correct place, and then the line drawn. One particular rendition of a hand-drawn square is

depicted in Figure 44.

B The Informal Fax: i-FAX |- O] x]
Fax Edit Bebug Help

Fax TRANSMISSION
To:
From: lan Cullimore
Date:

Page 1 of: 1

Figure44: A human hand-drawn squar e entered into i-Fax

In one such typica trid, i-Fax generated the following set of four “rough draight line’
decompositions:

obj ecttype( hBBBI COAA, |ine).
shaki ness( hBBBI COAA, 2) .

peri od( hBBBI COAA, 4) .

di recti on( hBBBI COAA, 90) .

t hi ckness( hBBBI COAA, 3) .

har mony ( hBBBI COAA, 0) .

accur acy( hBBBI COAA, 5) .

| engt h( hBBBI COAA, 89) .

st art poi nt (hBBBI COAA, 256, 256) .

obj ecttype(hBBBI COAB, |ine).
shaki ness( hBBBI COAB, 2) .

peri od( hBBBI COAB, 4) .

di recti on( hBBBI COAB, 180).

125



t hi ckness( hBBBI COAB, 3) .

har mony( hBBBI COAB, 0) .

accur acy(hBBBI COAB, 5) .

I engt h( hBBBI COAB, 92) .

st art poi nt (hBBBI COAB, 346, 256) .

obj ecttype(hBBBI COAC, |ine).
shaki ness( hBBBI COAC, 2) .

peri od( hBBBI COAC, 4) .

di recti on( hBBBI COAC, 270) .

t hi ckness( hBBBI COAC, 3) .

har mony ( hBBBI COAC, 0) .

accur acy( hBBBI COAC, 5) .

I engt h( hBBBI COAC, 91) .

st art poi nt (hBBBI COAC, 349, 346).

obj ecttype(hBBBI COAD, |i ne).
shaki ness( hBBBI COAD, 2) .

peri od( hBBBI COAD, 4) .

di recti on( hBBBI COAD, 0) .

t hi ckness( hBBBI COAD, 3) .

har mony ( hBBBI COAD, 0) .

accur acy( hBBBI COAD, 5) .

I engt h( hBBBI COAD, 88) .

st art poi nt (hBBBI COAD, 259, 347).

Each definition st contains the “objecttype’ (i.e. “line” for Sraight line), and the garting point
co-ordinate podtion “gartpoint” (where the origin is the top left hand corner of the FFax
pane). Each definition dso contains a st of informd cognitive dimengons describing the
characterigtics of the line. In this implementation, those dimensions logged are shakiness,
period, thickness, harmony, accuracy, and length. Although harmony isincduded in the list
of dimengons it is not utilised in this implementation. The direction of the lineis measured in
degrees clockwise from the vertical, so there are four lines of directions 90, 180, 270 and O

(i.e. 360) degrees.

Although dl the users, after some practice, were able to successfully draw straight lines, it was
found to be much more difficult to draw a set of four such lines tha EXAMINER would

recognise as a square. That is, the four lines might look reasonably square-like to the user, but
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EXAMINER would find either (&) a number of digointed lines, (b) often at best a rectangle,

or (c) a best, and very occasondly, a square.

In this successful case, +View then took the Class 2 informd object Sgquare (which was
spooled into an output file by Examiner) as input, and generated its rendition of the object as

shownin Fgure 45.

B The Informal Object Yiewer: i-View

View  Help

Figure45: Theresultant square, regenerated by i-View

4.6.3.1 A Metric of Success Drawn from the User Studies

In dl cases, the users were able after some time to successfully draw four rough straight lines

that were subsequently determined to be a square by EXAMINER.

These squares were then subsequently recongtituted by +View, and viewed by the reevant

user who had created the origina square. The process of input, examination and subsequent
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recondtitution generdly took three or four minutes. The user was dways shown the

recongtituted square, and not the origina one.

The users were then asked:

() “isthis rendition a square?’

and if the answer was “yes’, the question was asked:

(D) “Is the square exactly the same one as the one that you origindly drew?’

and if the answer was “no”, the question was asked:

(i) “Isit to dl intents and purposes the same one?’

and if the answer was “no”, the question was asked:

(iv) “why not?’

or if the answer was “yes’ to (iii), the question was asked:

(V) “why don't you think that the square is exactly the same?”’

The five users successfully created a total of 12 sguares, dl of which were successfully
recognised by EXAMINER as squares, and subsequently reproduced as renditions of squares
by +View. When asked question (i), in dl cases the users accepted that the resultant images
represented squares. In four cases the users answered “yes’ to question (i), and in Sx cases,
having answered “no” to (ii), they answered “yes’ to (iii). In this case, being questioned further
by (v), they clamed that they could remember that the lines were not exactly the same as the
ones that they had originaly drawn. In the cases that the users answered “yes’ to (ii), they
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dated that they thought that the squares were indeed exactly the same ones as the ones

origindly drawn.

In two cases users answered “no” to question (iii). When questioned further by (iv), in both
cases they stated that the lines of the square gppeared unrecognisable from the ones that they
had origindly drawn, dthough they accepted that the resultant images were reasonable

squares.

Users who had answered “yes’ to (iii) were further questioned about the nature of the squares
subsequently reproduced by -View. In al cases they accepted that the View squares were
satisfactory renditions of a square, and therefore conveyed the same meaning as their origind

drawing.

4.6.3.2 Conclusions Drawn from the User Studies

1) The mouse and stylus were found to awkward devices to use, especidly for drawing

draght lines. Other types of input devices could be tried.

2) The users took some time to get used to the system, and had to experiment for a few
minutes to be able to create successful images (i.e. “squares’ that were recognised as such

by EXAMINER).

3) The resultant squares were in most cases thought to be ether exactly the same, or to dl

intents and purposes the same, asthe originds.

4) The case of usng squares, dthough illugrative, is ampligtic, and more complex diagrams

need to be examined in the future.
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4.6.3.3 Limitations of the User Studies

Since the current implementations of the software programs are rather limited in their
capabilities, notably EXAMINER which, while being able to recognise sguares cannot yet
recognise a house, the user sudies are useful, in that they provide some preiminary feedback,
but not exhaudtive. It is hoped to be able to develop the software programs further in the
future, and once more complex shapes such as a house and diagrams of maps can be

recognised, more user studies can take place.

4.6.4 Side Effectsof Utilising Informal I nterfaces

There are a number of interesting Sde-effects which come out of the representations used in

the type of informd interface detalled in this thes's, as discussed in this section.

4.6.4.1 Data compression and speed of transmission

It will have been seen that a complex image such as a sketch of a house might occupy perhaps
a pixd bit-map of 200 * 200 bits or approximately 5 kilobytes of memory — and thet isa a
low resolution in monochrome. Scanners and fax machines operate at much higher resolutions,
and hence create bit-map files of even greater Sze - even more so when colour is involved —

athough of course such images are compressed and encoded for transmission.

A more compact representation for informa objects is sraight-forward to devise The
representation used in the implementation described in this thesis is ddiberately verbose, and
yet a its ultimate a complex image like a hand-drawn sketch of a house can be distilled down

to a gngle token cdled house. At the word this is five bytes of ASCII characters (admittedly
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within some file or packet structure), and at the best could be represented as a token of
perhaps just a few bits. Of course this representation is, as dways, context-dependent, and
may require supplementary objects. Neverthdess, it is fdt that such informal representations

would generaly provide for very compact encgpsulations.

In this implementation, a square produces an output file from iFax that is 1,258 bytesin Sze.
EXAMINER's output rendition is even smaller, a only a few dozen bytes. A smilar sized
monochrome bitmap image of such asquare is gpproximatdy 2,500 bytesin Sze. A Sde effect
of thisis gpeed of tranamisson. Fewer bytes of data, especialy compared to the large amount
of data generdly involved in Internet transmissions, mean quicker transmisson times over dow

tdecommunications links.

This adds vadue to the design and implementation of object-based systems, such as the
informa interface described in this thes's, because of the inherently compact representations of
gist that may result. In this case, this has the potentia benefit of speeding up data transmisson,
and so making a red-life implementation of such a system practicd for some Stuations. For
ingtance, mobile data rates over GSM are currently limited to 9,600 baud, as compared to

perhaps severd hundred thousand baud over fixed lines.

4.6.4.2 Localisation and Locale Information

There is an interesting by-product that can be utilised in reconstruction techniques - that of
taking account of the locale of the user (which can typicaly be determined from the underlying
operating system). It may be advantageous to sometimes offer a rendition of reconstructed

informa objectsin a style sympathetic to the location and culture in question. For ingtance, the
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rendition of an image of a mal box could be dightly different (but perhaps more familiar)

depending on whether it isfor an audience in France, the United States, Britain, or wherever.

4.6.4.3 Indexing by Gist

The type of informa interface system described here lends itself to an indexing system. Since
representations, such as sketch-like houses, are didtilled down to a angle or smal number of
informa objects representing thelr gist, they are a compact representation and suitable for
cataloguing. Representations can be indexed according to any given paticular level of
informality. So, a the mogt “loose’ level of definition (i.e a a high levd of informdlity), dl
representations of sketches of various different types of houses, for instance, are afforded the
ample informa object definition of House. Applying a lower levd of informdity would yied
finer detail for the representations, thus sub-categorising them. For instance, houses could be

sub-indexed according to StyleOfRoof, Number OfChimneys, and so forth.

Again, this adds vaue to the design and implementation of object-based systems, such asthe
informa interface described in this thesis, because of the aternative way that such objects
could be represented interndly, and subsequently catadogued and indexed. Such an object-
basad system lends itsdf well to utiliang inheritance, with derived objects adding more detail

to their structure and representation as required through their member functions and objects.

4.7 Summary of this Chapter

This chepter describes a set of software tools and applications developed to illustrate the
implementation of one type of informd interface, as described in this thess. The components
of the sysem are (i) an Informa Interface Object Browser (120B), which is a tool for
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investigating informa cognitive dimengons and shapes, (ii) i-Fax, which is a “fax program’
dyle gpplication which recognises hand-drawn rough straight lines; (iii) a transport layer
exporter function XPORT, which conveys the externd representation from one client computer
to another; (iv) EXAMINER, an Al-based recognition engine which atempts to recognise
higher-level congtructs (such as a Square) from lower leve congructs (i.e. rough straight
lines); (v) DOSView, a low-level nforma object viewer, which recongructs rough straight
lines from ther informa object representations, and (vi) i-View, a high-levd informd object
viewer, which recongtructs high-level informa object representations such as a House and a

Square.

The chapter demondtrates an example scenario of using an informad interface system, whereby
a user enters a hand-drawn map into i-Fax, which is then processed by a Low Levd
Recogniser into its fundamentd informa objects (rough straight lines, rough curves, etc.).
These low-leve representations are further processed by a High Level Recogniser. This high-
level representation can then be transmitted to another distant user, to be reconstructed into an

informd rendition of the origind sketch, which should be judged to be Cl-equivdent to the

origind map.

The chapter dso condders metrics for evaluating the success of such a system, and gives the
results of one such evauation, being user sudies. A sample of users (generdly non-computer
literate) were asked to work through the process of drawing in a free-hand sketch of a square
into one of the software programs. This was subsequently recognised as (a) four rough straight

lines, and then, after a further recognition stage, (b) an informa square. A further software
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program then regenerated its own rendition of the square from the smple informa object

“square’, to the generd satisfaction of the users.

The chapter ds0 consgders some potentid benefits from dde effects of implementing an
informd interface system as described in this thesis. Informa object representations should
generdly be smaller, and fagter to transmit, than conventional representations. Also, informd
objects are potentidly locae-dependent, which may be used to advantage. They may dso

provide for efficient and compact ways of indexing some types of information.
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5. Conclusons and Further Research Work Directions

5.1 Introduction

The methods described in this thess provide an gpproach for designing and constructing
computer interfaces and software programs utilisng notions of informdity. This approach has
been demondrated a two levels fird, utilisng sketch input and output & an immediate
interactivity level, and second, the notion of retaining the underlying informa interna
representation across manipulation operations and transport interfaces. The flow of input,
decondtruction, representation, manipulation, reconstruction and output has been examined,

and the concepts of sketch as an interface and interaction design paradigm discussed.

To subgtantiate the claims of the thesis a software implementation has been described and
developed in the form of software tools and applications, in the guise of an email or fax system
utilisng informa architectures. The architecture's plaiform and implementation has been

demondtrated. User studies have been conducted, and the results set out and examined.

5.2 Principal Contributionsof the Thesis

The thesis has introduced the notion of employing informality in HumanComputer Interaction.
Specificaly, it has introduced the notion of using sketch input and output, and alowing for

tolerance of input and variability of output. It has aso introduced the notion of the git, i.e. the

fundamenta essence, of arepresentation.

The thesis has dso described an architecture for the structure and analysis of such informa

representations and systems, and a taxonomy of classes for such systems. An example
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sysgem'’s implementation in software is described in detall to hep support and illustrate the
cdams of the thess. User studies are aso presented to help support and illustrate the ams of
the thesis, and to hep highlight potentia areas of further research, as wdl as further user

Sudies.

5.3 Further Research Topics

More sophidticated or different domain-specific taxonomies of informa objects could be
congtrued than have been conddered so far in this thess. For ingtance, in the implementations
described in this thes's the basic congtruction has been around the Rough Straight Line, and
the ample congtructs (such as squares and triangles) arising out of it. There are two directions
in which this particular line of research could go: (1) more sophiticated systems could be
designed and developed to extend the implementations of the congtructs (into more complex
objects such as houses, letter boxes, cars and so forth), and (2) new classes of constructs
could be devised from other underlying primitive objects - perhaps using a circle or other

geometric shgpe as afundamentd primitive building block.

The implementation has been demondrated in a mixture of ‘C’, C++ and Prolog, but
something like a dedicated scripting language could be developed. There are dso other
domains, applications and problem areas to which these concepts could be gpplied in terms of

future implementations.

5.4 Informal Interface Futures

Although, for the purposes of this research, conventiond input devices such as the mouse and

the keyboards were assumed to be the input devices being used, it is interesting to conjecture
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what sorts of input devices might be used in the future: holograms or Virtud Redity hemets,

perhaps.

Using just a conventionad mouse and a keyboard has created some limitations in the usability of
the implementation software. Informd input in the guise of sketching is, by dfinition, well
auited to the use of a Rylus, as thisis the naturd way that people sketch usng pen on paper.
Drawing with a mouse is a more difficult task, as has been illudrated in the user sudies.
However, over the course of performing the research for this thess, stylus-based computers
such as the 3Com Pdm have been enjoying great popularity. It may be that they are well

auited to being utilised in implementations in the future.

5.4.1 AnInformal Interface Display

One could imagine that an informd interface display device could be constructed, operating as
aclient in a smilar manner to the X-Windows or other dlient-server graphics device system.
An informd interface display is suited to informa interface representation Structures, as the
reconstruction display engine could be embedded within the display device. So, rather than
have a client software driver recongtruct an informa sketch output image for display on a
conventiond bit- mapped raster graphics display, the display itsdf could accept informd

object definitions.

5.5 Future Development Directions

It will be gratifying if this research into informa interfaces dso spurs on development work into
applicable areas,; such work has dready been progressng in areas such as Pad++ (Meyer &
Crumpton, 1996) and the Electronic Napkin (Gross, 1996).
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The benefits and rationde behind utilisng informa interface concepts in HCI might be twofold.
Fird, this thes's has attempted to show that such a sketch-based informd interaction may be
beneficid for the end user, both in providing a naturd and familiar way in which to operate,
and dso in providing for a useful framework for the representation of data and idess.
Secondly, there may be spin-offs from the use of informd interface architectures as described
in thisthes's, such as speed of data transfer and compression of data. Informal objects can be
designed to be inherently small and concise, and so are quick to tranamit over adow transport
medium (such as a mobile telephone data connection). Since the representations are
compacted and condensed, and in a sense mangled, there may be scope for inherent

encryption too.

As has been gated, this fundamentd notion of gpplying informaity to HCI is twofold, as both
the ovelying inteface desdgn, and the underlying computer operation and internd
representations must be considered. It is not necessary for informality to be gpplied a both
these high and low levels. A patidly informd system could gpply them at judt, say, the higher
level of direct human-computer interaction, in the form of sketch input from the human user,
and sketchy-style output from the computer. Such a partialy informa system could operate a
just this superficidly informa leve, with the underlying representations and operations actudly
being modeled on conventiond operating systems, object systems, data representations and

architectures.

Conversdy, some conventiona-looking computer systems, with conventiond input and output

mechanisms, could utilise underlying notions of informdity in some of ther internd
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representations. For ingtance, it may be useful to decompose externd representations into

fundamenta internd primitives that encapsulate the gist of the representation.

Hndly, a fully-informd interface system, as according to this thes's, could use both of these
eements, and utilise both the higher leve of informd input and output in the human-computer

interaction cycles, aswell aslow-leve informd internd representations.
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Appendix A

Program Listings

Note that only partid ligings are given for the software implementations, athough dl the
essentid ements of the code are presented here. Only extraneous functions not centra to the
code have been omitted for brevity.

120B Source Code Listing (‘C')

/*
The mai n body of the program

*/

LONG FAR PASCAL Mai nWhdProc (HWND hwid, WORD nessage, WORD wParam LONG | Par an
{
FARPRCC | pPr oc;

int i;

switch (nessage) {
case WV COVVAND:
swi tch( wParam)
{
case | DM ABQUT:
| pProc = MakeProcl nstance ((FARPROC) About, hinst);
Di al ogBox (hinst, "AboutBox", hwWhd, (FARPRCC) | pProc);
FreeProcl nstance (I pProc);

return (Def WndowProc (hWhd, nessage, wParam | Paran));

case | DM HELP:
| pProc = MakeProcl nstance ((FARPROC) Hel p, hinst);
Di al ogBox (hinst, "Hel pBox", hwhd, (FARPRCC) | pProc);
FreeProcl nstance (I pProc);

return (Def WndowProc (hWhd, nessage, wParam | Paran));
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case | DM LI NE;

Cl ear Wndow ( hwhd) ;

GetdientRect (hwd, (RECT FAR*) &Rect);

/*

Wrk out the ideal |ocation */

if (iDrection <= 90) {

Li neLength = (Rect.bottom- Rect.top)/3 ;

StartX = (Rect.right - Rect.left)/3;

StartY = ((Rect.bottom -

} else {

if (iDrection <= 180) {

Start X
StartyY

} else {

[* Cet size */

/* of w ndow */

Rect.top)/3)*2;

((Rect.right - Rect.left)/3)*2;

((Rect.bottom- Rect.top)/3)*2;

if (iDrection <= 270) {

Start X
StartyY
} else {
Start X
StartyY

((Rect.right - Rect.left)/3)*2;

(Rect.bottom - Rect.top)/3;

(Rect.right - Rect.left)/3;

(Rect.bottom - Rect.top)/3;

I nformal Li ne (hWid, i Shaki ness, i Peri od,

i Har mony, i Accuracy);

i Direction, iThickness,

return (Def WndowProc (hwid, message, wParam | Param);

case | DM VERTAXI S:

Cl ear Wndow ( hwhd) ;

GetdientRect (hwd, (RECT FAR*) &Rect);

/*

Wrk out the ideal |ocation */
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Start X

(Rect.right - Rect.left)/4 + Rect.left;

StartY = (Rect.bottom- Rect.top)/4 + Rect.top;

Li neLength = (Rect.bottom- Rect.top)/2 ;

Vert Axi s (hWhd, i Shakiness, iPeriod, iDrection, iThickness,

i Har nony, i Accuracy);

return (Def WndowProc (hwid, message, wParam | Param);

case | DM HORI ZAXI S:

Cl ear Wndow ( hwhd) ;

GetdientRect (hwd, (RECT FAR*) &Rect);

/* Wrk out the ideal location */

Start X

(Rect.right - Rect.left)/4 + Rect.left;

StartY = Rect.bottom- (Rect.bottom- Rect.top)/4;

Li neLength = (Rect.right - Rect.left)/2 ;

Hori zAxi s (hwhd, i Shaki ness, iPeriod, iDirection, iThickness,

i Har nony, i Accuracy);

return (Def WndowProc (hwid, message, wParam | Param);

case | DM _GRAPHAXES:

Cl ear Wndow ( hwhd) ;

GetdientRect (hwd, (RECT FAR*) &Rect);

/* Wrk out the ideal l|ocation */
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Start X

(Rect.right - Rect.left)/4 + Rect.left;

StartY = (Rect.bottom- Rect.top)/4 + Rect.top;
Li neLength = (Rect.bottom- Rect.top)/2 ;

Vert Axi s (hwWhd, i Shakiness, iPeriod, iDrection, iThickness,

i Har nony, i Accuracy);

Start X = EndX - 5;

StartY = EndY - 5;

Li neLength *= 3;

Li neLength /= 2;

HorizAxis (hWnd, iShakiness, iPeriod, iDirection, iThickness, MAX_HARMONY,

iAccuracy);

return (Def WndowProc (hwWid, nessage, wParam | Param);

case | DM _SQUARE:

Cl ear Wndow ( hwhd) ;

GetdientRect (hwWwid, (RECT FAR*) &Rect); [/* Get size of w ndow */
StartX = (Rect.right - Rect.left)/3;

StartY = (Rect.bottom- Rect.top)/3;

Li neLength = (Rect.bottom- Rect.top)/3;

iDrection = 0;

I nformal Li ne (hwid, i Shaki ness, iPeriod, iDrection, iThickness,
i Har nony, i Accuracy);

Start X = EndX;

StartY = EndY,;

Li neLength = (Rect.bottom- Rect.top)/3;

iDirection = 270;

I nformal Li ne (hwid, i Shaki ness, iPeriod, iDrection, iThickness,
i Har nony, i Accuracy);

Start X = EndX;

StartY = EndY,;
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Li neLength = (Rect.bottom- Rect.top)/3;
i Direction = 180;
I nfornal Li ne (hwid, i Shaki ness, iPeriod, iDrection, iThickness,
i Har nony, i Accuracy);
Start X = EndX;
StartY = EndY,;

Li neLength = (Rect.bottom- Rect.top)/3;
iDirection = 90;
I nfornal Li ne (hwid, i Shaki ness, iPeriod, iDrection, iThickness,
i Har nony, i Accuracy);
Start X = EndX;
StartY = EndY,;

return (Def WndowProc (hwid, message, wParam | Param);

case | DM TRl ANGLE:

Cl ear Wndow ( hwhd) ;

GetdientRect (hwWwid, (RECT FAR*) &Rect); [/* Get size of w ndow */
StartX = (Rect.right - Rect.left)/3;

StartY = (Rect.bottom- Rect.top)/3;

Li neLength = (Rect.bottom- Rect.top)/3;
i Direction = 300;
I nfornal Li ne (hwid, i Shaki ness, iPeriod, iDrection, iThickness,
i Har nony, i Accuracy);
Start X = EndX;
StartY = EndY,;

Li neLength = (Rect.bottom- Rect.top)/3;
i Direction = 180;
I nfornal Li ne (hwid, i Shaki ness, iPeriod, iDrection, iThickness,
i Har nony, i Accuracy);
Start X = EndX;
StartY = EndY,;
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Li neLength = (Rect.bottom- Rect.top)/3;
iDirection = 60;
I nfornal Li ne (hwid, i Shaki ness, iPeriod, iDrection, iThickness,

i Har nony, i Accuracy);

return (Def WndowProc (hwid, message, wParam | Param);

case | DM VERTI CALS:
Cl ear Wndow ( hwhd) ;

GetdientRect (hwWid, (RECT FAR*) &Rect); [/* Get size of w ndow */
DiffX = (Rect.right - Rect.left)/NUM VERTI CAL_LI NES;

StartY = (Rect.bottom- Rect.top)/20;

Li neLength = (Rect.bottom- Rect.top) - StartY*2;
i Direction = 270;

for (i =1, i < NUMVERTICAL_LINES; i++) {

StartX = DffX * i;

I nformal Line (hwhd, i Shakiness, iPeriod, iDrection, iThickness,
i Har nony, i Accuracy);

return (Def WndowProc (hwid, message, wParam | Param);

case | DM HORI ZONTALS:

Cl ear Wndow ( hwhd) ;

GetdientRect (hWid, (RECT FAR*) &Rect); /* Get size of w ndow */

StartX = (Rect.right - Rect.left)/20;

DiffY = (Rect.bottom- Rect.top)/NUM HORI ZONTAL_LI NES;

Li neLength = (Rect.right - Rect.left) - StartX*2;

iDrection = 0;

for (i = 1; i < NUM HORI ZONTAL_LINES; i++) {
StartY = DffYy * i;
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I nformal Line (hwhd, i Shakiness, iPeriod, iDrection, iThickness,
i Har nony, i Accuracy);

return (Def WndowProc (hwid, message, wParam | Param);

case IDM QR D

Cl ear Wndow ( hwhd) ;

GetdientRect (hwWid, (RECT FAR*) &Rect); [/* Get size of w ndow */

DiffX = (Rect.right - Rect.left)/NUM VERTI CAL_LI NES;
StartY = (Rect.bottom- Rect.top)/20;

Li neLengt h (Rect.bottom - Rect.top) - StartY*2;

i Direction 270;
for (i = 1; i < NUMVERTICAL LINES; i++) {
StartX = DffX * i;

I nformal Line (hWhd, i Shakiness, iPeriod, iDrection, iThickness,
i Har nony, i Accuracy);

StartX = (Rect.right - Rect.left)/20;

DiffY = (Rect.bottom- Rect.top)/NUM HORI ZONTAL_LI NES;

Li neLength = (Rect.right - Rect.left) - StartX*2;

iDrection = 0;

for (i = 1; i < NUMHOR ZONTAL_LINES; i++) {

StartY = DffYy * i;

I nformal Line (hwWhd, i Shakiness, iPeriod, iDrection, iThickness,
i Har nony, i Accuracy);

return (Def WndowProc (hwid, message, wParam | Param);

case | DM CLEAR
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Cl ear Wndow ( hwhd) ;
return (Def WndowProc (hwid, message, wParam | Param);

case | DM RESET:
Reset Defaults ();
return (Def WndowProc (hwid, message, wParam | Param);

case IDMEX T:
SendMessage (hwhd, WM CLOSE, 0, OL);
return (Def WndowProc (hwid, message, wParam | Param);

case | DM _SHAKI NESS:
| pProc = MakeProcl nstance ((FARPROC) Get Shaki ness, hinst);
Di al ogBox (hinst, "Shaki nessBox", hwid, (FARPROC) | pProc);
FreeProcl nstance (I pProc);

return (Def WndowProc (hwid, message, wParam | Param);

case | DM TH CKNESS:
| pProc = MakeProcl nstance ((FARPROC) Get Thi ckness, hinst);
Di al ogBox (hinst, "Thi cknessBox", hwid, (FARPROC) | pProc);
FreeProcl nstance (I pProc);

return (Def WndowProc (hwid, message, wParam | Param);

case | DM PER QD
| pProc = MakeProcl nstance ((FARPROC) GetPeriod, hinst);
Di al ogBox (hinst, "PeriodBox", hwd, (FARPROC) | pProc);
FreeProcl nstance (I pProc);

return (Def WndowProc (hwid, message, wParam | Param);

case | DM DI RECTI ON:
| pProc = MakeProcl nstance ((FARPROC) GetDirection, hinst);
Di al ogBox (hinst, "DirectionBox", hwid, (FARPROC) |pProc);
FreeProcl nstance (I pProc);

return (Def WndowProc (hwid, message, wParam | Param);

case | DM _HARMONY:

| pProc = MakeProcl nstance ((FARPROC) Get Harnmony, hinst);
Di al ogBox (hinst, "HarnonyBox", hwd, (FARPROC) | pProc);
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FreeProcl nstance (I pProc);

return (Def WndowProc (hwid, message, wParam | Param);

case | DM _ACCURACY:
| pProc = MakeProcl nstance ((FARPROC) Get Accuracy, hinst);
Di al ogBox (hinst, "AccuracyBox", hwWid, (FARPROC) |pProc);
FreeProcl nstance (I pProc);

return (Def WndowProc (hwid, message, wParam | Param);

defaul t:
return (Def WndowProc (hwid, message, wParam | Param);

case WM CREATE:
hAccTabl e = LoadAccel erators (hinst, "i2obMenu");

br eak;

case WMV DESTROY:
Post Qui t Message (0);

br eak;

defaul t:
return (Def WndowProc (hwd, nessage, wParam | Param);

}
return NULL;
}
| *
Routine to draw a vertical |ine
*/

void FAR PASCAL VerticallLine (HWND hwhd, int Shakiness, int Period,
Direction, int Thickness, int Harnony, int Accuracy)

{
int s, t, n, p;
HDC hDC;

char str [4];
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hDC = Get DC (hwhd) ;

Di splayD ns ();

DoAccuracy (Accuracy);

DoHar nony X ( Har nony) ;

/* Draw the line */

s = random ( Shaki ness) - 1;

for (n = 0; n < LineLength; n++) {

for (p =0; p <= Period; p++) {

for (t = 0; t < Thickness; t++)

Set Pi xel (hDC, StartX+s+t, StartY+n, SET_PI XEL);

n++;

s = random ( Shaki ness) - 1;

EndX = Start X+s+t-1;

EndY = Start Y+n-1,;

Rel easeDC (hwid, hDO);

return;

/*
Main routine to draw an informal |ine

*/

void FAR PASCAL InfornmalLine (HWND hwWhd, int Shakiness, int Period, int
Direction, int Thickness, int Harnony, int Accuracy)
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int s, t, n, p;

HDC hDC;

char str [4];

doubl e Angle, xt, yt;

int x, vy;

hDC = Get DC (hWd) ;

Start X;

x
1

Start;

<
1

Angl e

Direction;

Angle = fnod (Angle, 90);

if ((Direction == 90) || (Direction == 180) || (D rection == 270))
Angl e = 90;

Angl e = DegToRad (Angle);

Di splayD ns ();

/*
DoAccuracy (Accuracy);

DoHar nony X ( Har nony) ;
*/

s = random ( Shaki ness) - 1;

if (Drection < 45) {

/* 0 < angle < 45 */

Li neLength = LineLength * cos (Angle);

xt = 0;
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for (n = 0; n < LineLength; n++) {

for (p =0; p <= Period; p++) {
for (t = 0; t < Thickness; t++)
Set Pi xel (hDC, x+s+t, y+s+t, SET_PI XEL);

X++;

Xt ++;

if (xt * (tan (Angle)) >= 1) { /* rounding problens */
y_-
xt =0

}

n++;

}

n__

s = random ( Shaki ness) - 1;

} else {

if (Drection <= 90) {

/* 45 < angle < 90 */

Li neLength = LineLength * sin (Angle);
yt =0;

for (n = 0; n < LineLength; n++) {

for (p =0; p <= Period; p++) {

for (t = 0; t < Thickness; t++)

Set Pi xel (hDC, x+s+t, y+s+t, SET_PI XEL);

yt ++;
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if (yt / (tan (Angle)) >= 1) {
X++;

yt = 0;

n++;

s = random ( Shaki ness) - 1;

} else {

if (Drection < 135) {

/* 90 < angle < 135 */

Li neLength = LineLength * cos (Angle);
yt = 0;

for (n = 0; n < LineLength; n++) {

for (p =0; p <= Period; p++) {

for (t = 0; t < Thickness; t++)
Set Pi xel (hDC, x+s+t, y+s+t, SET_PI XEL)

y--i
yt ++;

if (yt * (tan (Angle)) >= 1) {
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s = random ( Shaki ness) - 1

} else {

if (Drection <= 180 ) {

/* 135 < angle < 180 */

Li neLength = LineLength * sin (Angle);
xt = 0;

for (n = 0; n < LineLength; n++) {

for (p =0; p <= Period; p++) {

for (t = 0; t < Thickness; t++)

Set Pi xel (hDC, x+s+t, y+s+t, SET_PI XEL);

Xt ++;

if (xt / (tan (Angle)) >= 1) {

s = random ( Shaki ness) - 1;

} else {
if (Drection < 225) {
/* 180 < angle < 225 */
Li neLength = LineLength * cos (Angle);
xt = 0;

for (n = 0; n < LineLength; n++) {
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for (p =0; p <= Period; p++) {
for (t = 0; t < Thickness; t++)
Set Pi xel (hDC, x+s+t, y+s+t, SET_PI XEL);
X--;
Xt++;
if (xt * (tan (Angle)) >= 1) {
y++;

xt = 0;

n++;

s = random ( Shaki ness) - 1;

} else {

if (Drection <= 270 ) {

/* 225 < angle < 270 */

Li neLength = LineLength * sin (Angle);
yt =0;

for (n = 0; n < LineLength; n++) {

for (p =0; p <= Period; p++) {

for (t = 0; t < Thickness; t++)
Set Pi xel (hDC, x+s+t, y+s+t, SET_PI XEL);

y++;

yt ++;

if (yt / (tan (Angle)) >= 1) {

X- -

yt = 0;
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n++;

s = random ( Shaki ness) - 1;

} else {

if (Drection < 315) {

/* 270 < angle < 315 */

Li neLength = LineLength * cos (Angle);
yt = 0;

for (n = 0; n < LineLength; n++) {

for (p =0; p <= Period; p++) {

for (t = 0; t < Thickness; t++)

Set Pi xel (hDC, x+s+t, y+s+t, SET_PI XEL)

y++;

yt ++;

if (yt * (tan (Angle)) >= 1) {

X++:

yt =0;

n++;

s = random ( Shaki ness) - 1

} else {
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/* 315 < angle < 360 */

Li neLength = LineLength * sin (Angle);

xt = 0;

for (n = 0; n < LineLength; n++) {

for (p =0; p <= Period; p++) {

for (t = 0; t < Thickness; t++)
Set Pi xel (hDC, x+s+t, y+s+t, SET_PI XEL);

X++:

Xt ++;

if (xt / (tan (Angle)) >= 1) {

y++;

xt = 0;

s = random ( Shaki ness) - 1;

}
}
}
}
}
}
}

}
EndX = x;
EndY = vy;
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Rel easeDC (hwid, hDO);

return;

void FAR PASCAL VertAxis (HWND hwid, int Shakiness, int Period, int Drection,
int Thickness, int Harmony, int Accuracy)

{

int s, t, n, p;

HDC hDC,;

random ze ();

Di splayD ns ();

DoAccuracy (Accuracy);

DoHar nony X (Har nony) ;

hDC = Get DC (hWd) ;

s = random ( Shaki ness) - 1;

for (n = 0; n < LineLength; n++) {

for (p =0; p <= Period; p++) {

for (t = 0; t < Thickness; t++)

Set Pi xel (hDC, StartX+s+t, StartY+n, SET_PI XEL);

n++;

s = random ( Shaki ness) - 1;

Rel easeDC (hwid, hDO);

EndX = Start X+s+t-1;
EndY = Start Y+n-1,;
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return;

void FAR PASCAL HorizAxis (HWAND hwd, int Shakiness,
int Thickness, int Harmony, int Accuracy)

{

int s, t, n, p;

HDC hDC,;

random ze ();

Di splayD ns ();

DoAccuracy (Accuracy);

DoHar nonyY ( Har nony) ;

hDC = Get DC (hWd) ;

s = random ( Shaki ness) - 1;

for (n = 0; n < LineLength; n++) {

for (p =0; p <= Period; p++) {

for (t = 0; t < Thickness; t++)

Set Pi xel (hDC, StartX+n, StartY+s+t, SET_PI XEL);

n++;

s = random ( Shaki ness) - 1;

Rel easeDC (hwid, hDO);

EndX = Start X+n-1;
EndY = Start Y+s+t-1;
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return;

voi d FAR PASCAL DoAccuracy (int Accuracy)
{
int n;

Accuracy = 10 - Accuracy; /* now 0 - 10 */

n=rand () %2;

if (n==0) {

StartX = StartX + Accuracy;
} else {

StartX = StartX - Accuracy;
}

n=rand () %2;
if (n==0) {

StartY = StartY + Accuracy;
} else {

StartY = StartyY

Accur acy;

n=rand () %2;
if (n==0) {

Li neLength = Li neLength + Accuracy;
} else {

Li neLength = Li neLength - Accuracy;

return;

voi d FAR PASCAL DoHar nonyX ( Har nony)
{

int n, nn;
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float fHarnony, f;

/* Now i ntroduce di sharnony */

f Har rony = Har nony;
fHarmony = 1 - (fHarnony / 10);

/* random ze (); */

n=rand () %StartX;
f =n;

f = fHarnmony * f;
nn = f;

if (n< StartX 2) {
StartX = StartX - nn;
} else {

StartX = StartX + nn;
}

return;

voi d FAR PASCAL DoHar nonyY ( Har nony)
{

int n, nn;
float fHarnony, f;

/* Now i ntroduce di sharnony */

f Har rony = Har nony;
fHarmony = 1 - (fHarnony / 10);

/* random ze (); */

n=rand () %Start;
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f =n;

—
1

f Harnony * f;

1
—h

nn

if (n< StartY/2) {
StartY = StartY - nn;

} else {
StartY = StartY + nn;

}

return;

}
i-Fax Sour ce Code Listing (C++)

TPoi nt | FaxWndow. : DrawLine(int s, int p, int d, int t,

TPoi nt sp)

{
TPoi nt point;

xPorter *xp;

/1 create a new | Line object:

ILine il(s, p, d, t, h, a, |, sp);

xp->xPortWitell Properties(s, p, d, t, h, a,

point = il.GetPoint();

if (!DragbDQ) {

Set Capture();

DragDC = new Td i ent DC(*t hi s);
Dr agDC- >MbveTo( poi nt) ;

whil e (point != TPoi nt (OxFFFF, OXFFFF)) {

point = il.GetPoint();
if (point !'= TPoint (O0xFFFF, OxFFFF))
Dr agDC- >Li neTo( poi nt) ;
h
Rel easeCapt ure();
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del et e DragDC;
DragDC = 0;

point = il.GetEndPoint();

return (point);

/] OnProcessBuffer
I/
/] Process the contents of the TPointslterator buffer,

/1 determ ne what sort of informal object it nmay be

voi d | FaxW ndow. : OrPr ocessBuf f er (voi d)
{

TPointslterator i(*Line);

TPoi nt endp;

int xdiff, ydiff;

int maxx, nmaxy, nx, ny;

int Direction;

char s[80];

int dirn;

xPorter *xp;

int per;

Direction = DONT_KNOW

per = 0; /1 period;

maxx

noon
e e

maxy

TPoi nt startp = i++;

while (i) {

TPoint p = i++
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nmx = abs(p.x - startp.x); // go along the points to work
// out the variance
if (maxx < nx)

maxx = nx,

if ((p.x == startp.x) & (p.x !'= endp.x))

per ++;

ny = abs(p.y - startp.y);

if (mxy < ny)
mexy = ny;

if ((p.y == startp.y) & (p.y != endp.y))

per ++;

endp = p; /'l save the last point

/1 Don't want a zero period:

if (!per)

per ++;

xdi ff = endp.x - startp.x;

ydiff = endp.y - startp.y;

if ((ydiff < MAX_HORIZ_YDIFF) && (maxy < MAXY))

Direction = HORI ZONTAL;

if ((xdiff < MAX_VERT XDl FF) && (maxx < MAXX))
Direction = VERTI CAL;

switch (Direction) {

case (HORI ZONTAL):
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if (endp.x > startp.x) {

dirn = 90;
} else {
dirn = 270;

/1 Shaki ness, Period, Direction, Thi ckness, Harnony, Accuracy,

/1 Length, Start
xp->xPortWitell Properties(nmaxy, per, dirn, 1, 0, 0, maxx, startp);
br eak;

case (VERTICAL):

if (endp.y > startp.y) {

dirn = 180;
} else {
dirn = 0;

xp->xPortWitell Properties(nmaxx, per, dirn, 1, 0, 0, maxy,
startp);
br eak;
defaul t:

br eak;

voi d | FaxW ndow: : CmDi spl ayBuf f er (voi d)
{

bool first = true;
TPointslterator i(*Line);
if (!DragbDC) {

Set Capt ure();

DragDC = new Td i ent DC(*t hi s);

while (i) {
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TPoint p = i++

if ('first)

Dr agDC- >Li neTo(p) ;
el se {

Dr agDC- >MoveTo( p) ;

first = fal se;

}
Rel easeCapt ure();

del et e DragDC;
DragDC = 0;
}

return;

/1 Constructor for ILine:
ILine::ILine(int s, int p, int d, int t, int h, int a, int |, TPoint sp)
{

| Shaki ness = s;

| Period = p;

IDrection

n
2

| Thi ckness

I}
—

| Har nony = h;
| Accuracy = a,
ILength = 1I;

Start Point = sp;

EndPoi nt sp;
Next Fl ag = O;
length = 0;

rAngle = 0;

Pr ot ot ypePoi nt = 0;

period = | Peri od;

/] ILine:: CetEndPoint; accessor for EndPoi nt
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TPoi nt | Li ne: : Get EndPoi nt ()

{
return (EndPoint);

int GetSFactor(int sr)
{

int s;

sr = randon{sr);

s = randon(2);
if (!s)
sr = -sr;

return (sr);

/1 |Line:: GetPoint

/] decide whether to + or -

/1 Angles are nmeasured CLOCKW SE fromthe vertical

TPoi nt |Line:: GetPoint()

{

int sr;

/1 CGet the shaki ness factor:

sr = Get SFact or (| Shaki ness);

if (IThickness == 0)

return (TPoi nt (OXFFFF, OXFFFF));

if (!NextFlag) {

Point = Start Point;

Pr ot ot ypePoi nt
Next Fl ag = 1;
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return (StartPoint);

if (length >= I Length) {
EndPoi nt = Poi nt;
return (TPoi nt (OXFFFF, OXFFFF));

switch(lDrection) {

case (0):
if (period--) { /1 wait for period to cone down
//to zero before
Poi nt-= TPoint (0, 1); /1 we decide whether to do a jiggle

Pr ot ot ypePoi nt-= TPoint (0, 1);
br eak;

} else {
Poi nt-= TPoint(sr, 1);
Pr ot ot ypePoi nt-= TPoint (0, 1);
period = | Peri od;

br eak;

case (45):

if (period--) {
Poi nt += TPoint (1, 0);
sr = Get SFact or (| Shaki ness);
Poi nt-= TPoint (0, 1);
Pr ot ot ypePoi nt += TPoint (1, 0);
Pr ot ot ypePoi nt-= TPoint (0, 1);
br eak;

} else {
Poi nt += TPoint (1, sr);
sr = Get SFact or (| Shaki ness);
Poi nt-= TPoint(sr, 1);
Pr ot ot ypePoi nt += TPoint (1, 0);
Pr ot ot ypePoi nt-= TPoint (0, 1);

period = | Peri od;
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br eak;

case (90):

if (period--) {
Poi nt += TPoi nt (1, 0);
Pr ot ot ypePoi nt += TPoint (1, 0);
br eak;

} else {
Poi nt += TPoint (1, sr);
Pr ot ot ypePoi nt += TPoint (1, 0);
period = | Peri od;

br eak;

case (135):

if (period--) {
Poi nt += TPoi nt (1, 0);
sr = Get SFact or (| Shaki ness);
Poi nt += TPoint (0, 1);
Pr ot ot ypePoi nt += TPoint (1, 0);
Pr ot ot ypePoi nt += TPoint (0, 1);
br eak;

} else {
Poi nt += TPoint (1, sr);
sr = Get SFact or (| Shaki ness);
Poi nt += TPoi nt (sr, 1);
Pr ot ot ypePoi nt += TPoint (1, 0);
Pr ot ot ypePoi nt += TPoint (0, 1);
period = | Peri od;

br eak;

case (180):
if (period--) {
Poi nt += TPoi nt (0, 1);
Pr ot ot ypePoi nt += TPoint (0, 1);

br eak;
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} else {
Poi nt += TPoi nt (sr, 1);
Pr ot ot ypePoi nt += TPoint (0, 1);
period = | Peri od;

br eak;

case (225):

if (period--) {
Poi nt-= TPoint (1, 0);
sr = Get SFact or (| Shaki ness);
Poi nt += TPoi nt (0, 1);
Pr ot ot ypePoi nt-= TPoint (1, 0);
Pr ot ot ypePoi nt += TPoint (0, 1);
br eak;

} else {
Poi nt-= TPoint (1, sr);
sr = Get SFact or (| Shaki ness);
Poi nt += TPoi nt (sr, 1);
Pr ot ot ypePoi nt-= TPoint (1, 0);
Pr ot ot ypePoi nt += TPoint (0, 1);
period = | Peri od;

br eak;

case (270):

if (period--) {
Poi nt-= TPoint (1, 0);
Pr ot ot ypePoi nt-= TPoint (1, 0);
br eak;

} else {
Poi nt-= TPoint (1, sr);
Pr ot ot ypePoi nt-= TPoint (1, 0);
period = | Peri od;

br eak;

case (315):
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| engt h++;

defaul t:

if (period--) {

Poi nt-= TPoint (1, 0);
sr = Get SFact or (| Shaki ness);
Poi nt-= TPoint (0, 1);

Pr ot ot ypePoi nt-= TPoint (1, 0);
Pr ot ot ypePoi nt-= TPoint (0, 1);

br eak;

el se {

Poi nt-= TPoint (1, sr);

sr = Get SFact or (| Shaki ness);
Poi nt-= TPoint(sr, 1);

Pr ot ot ypePoi nt-= TPoint (1, 0);
Pr ot ot ypePoi nt-= TPoint (0, 1);

period = | Peri od;

br eak;

br eak;

return (Point);

TPoi nt | FaxW ndow: : Dr awSquar e( TPoi nt St ar t Poi nt,

{

TPoi nt point;

/1 DrawLine returns TPoint end point,

/1 Shaki
poi nt
poi nt
poi nt

poi nt

ness,

Dr awLi ne( 2,
Dr awLi ne( 2,
Dr awLi ne( 2,

Peri od, Direction, Thi ckness, Harnony,

, 180, 3,

, 0, 3,

return (point);
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| engt h)

the last point drawn

Accur acy,

DrawLine(2, 4, 90, 3, 0, O, length, StartPoint);
4 0, 0, length, point);
4, 270, 3, 0, 0, length, point);
4 0, 0, length, point);

Length, Start



voi d | FaxW ndow: : CrBquar e(voi d)

{
Dr awSquar e( STARTSQUARE, S| ZESQUARE) ;

return;

voi d | FaxW ndow:. : Ont ar ()

{
Drawline(2, 4, 0, 3, 0, 0, 90, STARTSTAR);
Drawline(2, 4, 45, 3, 0, 0, 60, STARTSTAR);
Drawline(2, 4, 90, 3, 0, 0, 90, STARTSTAR);
Drawline(2, 4, 135, 3, 0, 0, 60, STARTSTAR);
Drawline(2, 4, 180, 3, 0, 0, 90, STARTSTAR);
Drawline(2, 4, 225, 3, 0, 0, 60, STARTSTAR);
Drawli ne(2, 4, 270, 3, 0, 0, 90, STARTSTAR);
Drawline(2, 4, 315, 3, 0, 0, 60, STARTSTAR);
return;

}

voi d | FaxW ndow: : CnHouse()

{
TPoint tp, Chi meyPl ace, Chi meyCfset, W ndowPosition;

/1 draw the nmain building square

tp = DrawSquar e( STARTHOUSE, S| ZEHOUSE) ;

/1 then draw the roof
tp = DrawLine(2, 4, 45, 3, 0, 0, 25, tp);
tp = DrawLine(2, 4, 90, 3, 0, 0, SIZEHOUSE 2, tp);
Chi meyPl ace = tp;
DrawLi ne(2, 4, 135, 3, 0, 0, 25, tp);

/1 and wi ndows

W ndowPosi ti on = TPoi nt (S| ZEHOUSE/ 5, SI ZEHOUSE/ 5) ;
W ndowPosi ti on += STARTHOUSE;
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Dr awSquar e( W ndowPosi ti on, SI ZEW NDOW ;

W ndowPosi ti on = TPoi nt ((SI ZEHOUSE - (2*S|I ZEHOUSE/5)), SI ZEHOUSE/5);
W ndowPosi ti on += STARTHOUSE;
Dr awSquar e( W ndowPosi ti on, SI ZEW NDOW ;

W ndowPosi ti on = TPoi nt (S| ZEHOUSE/ 5, (SI ZEHOUSE - (2* Sl ZEHOUSE/ 5)));
W ndowPosi ti on += STARTHOUSE;
Dr awSquar e( W ndowPosi ti on, SI ZEW NDOW ;

W ndowPosi tion = TPoi nt ((SI ZEHOUSE - (2*SI ZEHOUSE/ 5)), (SIZEHOUSE —
(2* S| ZEHOUSE/ 5))) ;
W ndowPosi ti on += STARTHOUSE;
Dr awSquar e( W ndowPosi ti on, SI ZEW NDOW ;
/1 and finally a chi mey
Chi meyO fset = TPoi nt (- SI ZECH MNEY*2, - SI ZECH M\EY) ;
Chi meyPl ace = Chi meyPl ace + Chi meyOfset;

Dr awSquar e( Chi meyPl ace, S| ZECH M\EY) ;

return;
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Examiner Source Code Listing (Proloq)

main :

openl og(' exam ner.log'),

write($EXAM NER Cont ext Expert START$), nl,

write($Copyri ght
nl,

(c) 1996 lan Cul linore.

write($Revision: 1.00%), nl,
consul t ($\\out\\i f ax. pro$),
exam ner,

cl osel og.

exam ner ;-

wite($Examining...$), nl,
write($Found objects:$), nl,
obj ecttype(Handl e, Type),
write($handle: $),
write(Handl e),
wite($; type: $),
write(Type),
direction(Handl e, D),
wite($; Dirn: $),
wite(D),

nl,

fail.

exam ner ;-

get _j oi ns,

fail.

exam ner -

find_shapes,

fail.

exam ner ;-

write($EXAM NER Cont ext Expert STOP$), nl.
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%

% fi nd_shapes

find_shapes : -
find_four_sided_shape,

fail.

find_shapes : -
find_triangle,

fail.

find_shapes :-
find_rectangl e,

fail.

find_triangle :-
j oi ned(A, B),
j oi ned(B, O,
j oined(C, A,

wite($Found a triangle$), nl.

find_rectangle :-

j oi ned(A, B),

ri ght _angl e(A, B),

j oi ned(B, O,

ri ght _angle(B, O,

j oi ned(C, D),

ri ght _angle(C, D),

j oi ned(D, A),

ri ght _angle(D, A,

write($Found a rectangle from$),

wite(A), wite($to $), wite(B), wite($ to $), wite(C),
wite($ to $), wite(D),

nl.

find_four_sided_shape :-
j oi ned(A, B),
j oi ned(B, O,
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j oi ned(C, D),
j oi ned(D, A),
write($Found a four-sided shape from$),

wite(A), wite($to $), wite(B), wite($ to $), wite(C),
wite($ to $), wite(D),

nl.

%
% get _j oi ns
%

% Search for joined |ines

get _joins :-
j Oi ned_to,
fail.
get _joins :-
j oi ned(X, Y),
wite($Found a join from$), wite(X), wite($ to $),
wite(Y), nl,
fail.
% _______________________________________________________
%

% joined_to

% direction O

joined _to :-
obj ecttype(Handl e, line),
di recti on(Handl e, 0),
| engt h(Handl e, Length),
accuracy(Handl e, Accuracy),
AA is Accuracy*2,
st art poi nt (Handl e, Xcoord, Ycoord),
XXcoord is Xcoord - Accuracy,
YYcoord is Ycoord - Length - Accuracy,
for(X, 0, AA 1),
for(Y, 0, AA 1),
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XX is XXcoord + X,

YY is YYcoord + Y,

start poi nt (Handl e1, XX, YY),

assert (j oi ned(Handl e, Handl el)),

di rection(Handl e, DO),

di rection(Handl el, D1),

(D1 - DO) =:= 90,

assert (right_angl e(Handl e, Handlel)),

fail.

% direction 90

joined _to :-

%
%

%
%

obj ecttype(Handl e, line),

di rection(Handl e, 90),

writel og($Found direction 90%), nllog,
| engt h(Handl e, Length),

accuracy(Handl e, Accuracy),

AA is Accuracy*2,

writel og($length: $),

writel og(Length), nllog,

st art poi nt (Handl e, Xcoord, Ycoord),
witel og($StartPoint: $),

writel og(Xcoord), witelog($; $), witel og(Ycoord),
writel og($EndPoint: $),

XXcoord is Xcoord + Length - Accuracy,
YYcoord is Ycoord - Accuracy,

writel og(EndX), witelog($; $), witel og(Ycoord),
for(X, 0, AA 1),

for(Y, 0, AA 1),

witelog($X: $), witelog(X), nllog,
witelog($Y:$), witelog(Y), nllog,

XX is XXcoord + X,

YY is YYcoord + Y,

witelog($XX:$), witelog(XX), nllog,
witelog($YY:$), witelog(YY), nllog,
startpoi nt (Handl el, XX, YY),
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% writelog(XX), nllog,
% writelog(YY), nllog,
assert (j oi ned(Handl e, Handl el)),
di rection(Handl e, DO),
di rection(Handl el, D1),
(D1 - DO) =:= 90,
assert (right_angl e(Handl e, Handlel)),

fail

% direction 180

joined _to :-
obj ecttype(Handl e, line),
di recti on(Handl e, 180),
writel og($Found direction 180%), nll og,
| engt h(Handl e, Length),
writel og($length: $),
writel og(Length), nllog,
accuracy(Handl e, Accuracy),
AA is Accuracy*2,
st art poi nt (Handl e, Xcoord, Ycoord),
witel og($StartPoint: $),
writel og(Xcoord), witelog($; $), witel og(Ycoord), nl | og,
writel og($EndPoint: $),
XXcoord is Xcoord - Accuracy,
YYcoord is Ycoord + Length - Accuracy,
writel og(Xcoord), witelog($; $), witel og(EndY), nl | og,
for(X, 0, AA 1),
for(Y, 0, AA 1),
XX is XXcoord + X,
YY is YYcoord + Y,
startpoi nt (Handl el, XX, YY),
assert (j oi ned(Handl e, Handl el)),
di recti on(Handl e, DO),
di rection(Handl el, D1),
(D1 - DO) =:= 90,
assert (right_angl e(Handl e, Handlel)),

fail
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% direction 270

joined _to :-
obj ecttype(Handl e, line),
di recti on(Handl e, 270),
writel og($Found direction 270%), nll og,
| engt h(Handl e, Length),
writel og($length: $),
writel og(Length), nllog,
accuracy(Handl e, Accuracy),
AA is Accuracy*2,
st art poi nt (Handl e, Xcoord, Ycoord),
witel og($StartPoint: $),
writel og(Xcoord), witelog($; $), witel og(Ycoord), nl | og,
writel og($EndPoint: $),
XXcoord is Xcoord - Length - Accuracy,
YYcoord is Ycoord - Accuracy,
writel og(EndX), witelog($; $), witel og(Ycoord), nl | og,
for(X, 0, AA 1),
for(Y, 0, AA 1),
XX is XXcoord + X,
YY is YYcoord + Y,
start poi nt (Handl e1, XX, YY),
assert (j oi ned(Handl e, Handl el)),
di rection(Handl e, DO),
di rection(Handl el, D1),
(DL - DO) =:= -270,
assert (right_angl e(Handl e, Handlel)),

fail
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Appendix B

Example Output From EXAMINER

EXAM NER Cont ext Expert START
Copyright (c) 1996 lan Cullinore. Al rights reserved.
Revi si on: 1.00

obj ectt ype( hBBBI COAA, | i ne)

shaki ness( hBBBI COAA, 2)

peri od( hBBBI COAA, 4)

di recti on( hBBBI COAA, 90)

t hi ckness( hBBBI COAA, 3)

har mony ( hBBBI COAA, 0)

accur acy( hBBBI COAA, 5)

| engt h( hBBBI COAA, 90)

st art poi nt (hBBBI COAA, 256, 256)

obj ecttype(hBBBI COAB, | i ne)

shaki ness( hBBBI COAB, 2)

peri od( hBBBI COAB, 4)

di recti on( hBBBI COAB, 180)

t hi ckness( hBBBI COAB, 3)

har mony( hBBBI COAB, 0)

accur acy( hBBBI COAB, 5)

| engt h( hBBBI COAB, 90)

st art poi nt (hBBBI COAB, 346, 256)

obj ectt ype( hBBBI COAC, | i ne)

shaki ness( hBBBI COAC, 2)

peri od( hBBBI COAC, 4)

di recti on( hBBBI COAC, 270)

t hi ckness( hBBBI COAC, 3)

har mony ( hBBBI COAC, 0)

accur acy( hBBBI COAC, 5)

| engt h( hBBBI COAC, 90)

st art poi nt (hBBBI COAC, 349, 346)

obj ectt ype( hBBBI COAD, | i ne)

shaki ness( hBBBI COAD, 2)

peri od( hBBBI COAD, 4)

di recti on( hBBBI COAD, 0)

t hi ckness( hBBBI COAD, 3)

har mony( hBBBI COAD, 0)

accur acy( hBBBI COAD, 5)

| engt h( hBBBI COAD, 90)

st art poi nt (hBBBI COAD, 259, 347)

"I EOF'

Exam ni ng. . .

Found obj ects:

handl e: hBBBI COAA; type: line; Dirn: 90
handl e: hBBBI COAB; type: line; Dirn: 180
handl e: hBBBI COAC; type: line; Dirn: 270
handl e: hBBBI COAD; type: line; Dirn: O
$Found direction 90$%
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$l engt h: $90

$Start Poi nt: $256%; $256

$EndPoi nt: $H422%; $256

$Found direction 180%

$l engt h: $90

$Start Poi nt: $346%; $256

$EndPoi nt: $346%; $H432

$Found direction 270%

$l engt h: $90

$Start Poi nt: $349%; $346

$EndPoi nt: $H422%; $346

Found a join from hBBBI COAC t o hBBBI COAD
Found a join from hBBBI COAB t o hBBBI COAC
Found a join from hBBBI COAA t o hBBBI COAB
Found a join from hBBBI COAD t o hBBBI COAA

Found a four-sided shape from hBBBI COAC t o hBBBI COAD t o hBBBI COAA to

hBBBI COAB

Found a four-sided shape from hBBBI COAB t o hBBBI COAC to hBBBI COAD to

hBBBI COAA

Found a four-sided shape from hBBBI COAA to hBBBI COAB to hBBBI COAC to

hBBBI COAD

Found a four-sided shape from hBBBI COAD t o hBBBI COAA to hBBBI COAB to

hBBBI COAC

Found a rectangle from hBBBI COAC t o hBBBI COAD t o hBBBI COAA to

hBBBI COAB

Found a rectangle from hBBBI COAB t o hBBBI COAC t 0 hBBBI COAD to

hBBBI COAA

Found a rectangle from hBBBI COAA to hBBBI COAB t o hBBBI COAC to

hBBBI COAD

Found a rectangle from hBBBI COAD t o hBBBI COAA t o hBBBI COAB to

hBBBI COAC

Found a square from hBBBI COAC to hBBBI COAD t o hBBBI COAA t 0 hBBBI COAB
Found a square from hBBBI COAB to hBBBI COAC t o hBBBI COAD t o hBBBI COAA
Found a square from hBBBI COAA to hBBBI COAB t o hBBBI COAC t o hBBBI COAD
Found a square from hBBBI COAD to hBBBI COAA to hBBBI COAB t 0 hBBBI COAC

EXAM NER Cont ext Expert STOP

"# Amzil Listener - Amzil Development Environment

| File: Edt View Litener Buld Window  Help

] S |

Dle(| 5 [m @2(ne] o] | r|

EXAMINER Context Expert STOP

For Help, press F1

B Amzil Listener Hi=l B3
Found a rectangle from hBEBICOAB to hBBBICOAC to hBBBICOAD ll

Found a rectangle from hBBBICOAA to hBBBICOAB to hBEBICOAC
Found a rectangle from hBBBICOAD to hBEBBICOAA to hBBEBICOAB
Found a square from hBBBICOAC to hBBBICOAD to hBBBICOAA to
Found a square from hBBBICOAB to hBEBICOAC to hBBBICOAD to
Found a square from hBBBICOAA to hBEBICOAE to hBBBICOAC to
Found a square from hBBBICOAD to hBBBICOAA to hBBBICOAB to

| [NUM Z

Figure46: EXAMINER “discovering” a square
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Appendix C

Object Definition for a Rough Straight Linein BNF Style

<object> ::= <object header> (<handle>, <parameterl>, <parameter2>,...,<parameterN>)
<object type> ::= “objecttype’ | “shekiness’ | “period” | “direction” | “thickness’ | “harmony” |
“accuracy” | “length” | “<artpoint”

<handle> ::= <gtring> (unique)

<dring> ::= <char> | <char><gtring>

<char> ::= <ASClI character>

if <object type> =="“objecttype’ -> N=1 && parameterl == <objecttype>

<objecttype> =="“lin¢’

if <object type> =="ghakiness’ -> N=1 && parameterl == ‘degree of shakiness

if <object type> ==“period’ -> N=1 & & parameterl == ‘sine wave period of the line

if <object type>=="direction” -> N=1 && parameterl == ‘direction in degrees clockwise
from the vertica’

if <object type> == “thickness’ -> N=1 & & parameterl == ‘average pixel width of the line

if <object type> ==“harmony” -> N=1 && parameterl == ‘harmonious placement of the
object intheimage fiedd on ascaeof 1to 10

if <object type> == “accuracy” -> N=1 & & parameterl == ‘precison of placement of the
line
if <object type> =="length” -> N=1 && parameterl == ‘pixd length of theline

if <object type> == “dartpoint” -> N=2 && parameterl == ‘pixe dartpoint position
measured from the top left hand corner’ & & parameter2 == ‘pixd endpoint position
measured from the top left hand corner’
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